Nonpolar liquid low-level cell description by means of two-dimensional mathematical model
Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 49-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical model of nonpolar liquid low-level cell was presented, its optimal configuration from the point of view of unstable local structure model has been specified, the cell's parameters have been defined. Molecular vibration gain-frequency characteristic in the cell has been obtained.
Keywords: nonpolar liquid
Mots-clés : structure.
@article{MM_2010_22_6_a4,
     author = {M. S. Ivanova and O. V. Martynov},
     title = {Nonpolar liquid low-level cell description by means of two-dimensional mathematical model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {49--57},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_6_a4/}
}
TY  - JOUR
AU  - M. S. Ivanova
AU  - O. V. Martynov
TI  - Nonpolar liquid low-level cell description by means of two-dimensional mathematical model
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 49
EP  - 57
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_6_a4/
LA  - ru
ID  - MM_2010_22_6_a4
ER  - 
%0 Journal Article
%A M. S. Ivanova
%A O. V. Martynov
%T Nonpolar liquid low-level cell description by means of two-dimensional mathematical model
%J Matematičeskoe modelirovanie
%D 2010
%P 49-57
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_6_a4/
%G ru
%F MM_2010_22_6_a4
M. S. Ivanova; O. V. Martynov. Nonpolar liquid low-level cell description by means of two-dimensional mathematical model. Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 49-57. http://geodesic.mathdoc.fr/item/MM_2010_22_6_a4/

[1] Martynov O. V., Teterin E. P., “Molekulyarno-kineticheskaya model vozniknoveniya kasatelnykh napryazhenii v prostykh zhidkostyakh v shirokom intervale gradientov skorostei sdviga”, Prikladnaya fizika, 1999, no. 4, 12–20

[2] Martynov O. V., Teterin E. P., “Temperaturnaya zavisimost dinamicheskogo koeffitsienta vyazkosti na osnove strukturnoi modeli prostykh zhidkostei”, Prikladnaya fizika, 2004, no. 6, 17–20

[3] Martynov O. V., Teterin E. P., “Obobschënnaya funktsiya zavisimosti dinamicheskogo koeffitsienta sdvigovoi vyazkosti ot temperatury i davleniya”, Prikladnaya fizika, 2006, no. 6, 23–26

[4] Koronovskii A. A., Nepreryvnyi veivlet-analiz i ego prilozheniya, Fizmalit, M., 2003, 176 pp.

[5] Astafeva N. M., “Veivlet-analiz: osnovy i teoriya primeneniya”, UFN, 166:11 (1996), 1145–1170 | DOI

[6] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 464 pp.