The heat and mass transfer in a~multicrystalline silicon growth vessel by the Bridgman's technique
Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a 3D model and perform the numerical investigation of the convective heat and mass transfer in the vessel to produce multicrystalline silicon by the vertical Bridgeman's technique. The flow in the liquid is described by the Navier–Stokes equations as the Boussinesk's approximation, and the distribution of dissolved substance concentration is defined from the solved equation of the convective diffusion. Under consideration was the influence of the nonuniform heating of the rotary vessel side walls and crystallization front shape on the flow structure in the melt and distribution of the substance dissolved in the liquid.
Mots-clés : convection, simulation.
Keywords: polycrystalline silicon, heat and mass transfer
@article{MM_2010_22_6_a3,
     author = {V. N. Popov},
     title = {The heat and mass transfer in a~multicrystalline silicon growth vessel by the {Bridgman's} technique},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_6_a3/}
}
TY  - JOUR
AU  - V. N. Popov
TI  - The heat and mass transfer in a~multicrystalline silicon growth vessel by the Bridgman's technique
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 38
EP  - 48
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_6_a3/
LA  - ru
ID  - MM_2010_22_6_a3
ER  - 
%0 Journal Article
%A V. N. Popov
%T The heat and mass transfer in a~multicrystalline silicon growth vessel by the Bridgman's technique
%J Matematičeskoe modelirovanie
%D 2010
%P 38-48
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_6_a3/
%G ru
%F MM_2010_22_6_a3
V. N. Popov. The heat and mass transfer in a~multicrystalline silicon growth vessel by the Bridgman's technique. Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 38-48. http://geodesic.mathdoc.fr/item/MM_2010_22_6_a3/

[1] Nepomnyaschikh A. I., Fedosenko V. A., Eremin V. P. et al., “Low cost multicrystalline silicon as base for development of PV industry”, Proceedings of the symposium Energy Cooperation in Northeast Asia: Prerequisites, Conditions, Ways, Irkutsk, Russia, 2002, 341–348

[2] Fujiwara K., Obinata Y., Ujihara T., et al., “Grain growth behaviors of polycrystalline silicon during melt growth processes”, J. of Crystal Growth, 266 (2004), 441–448 | DOI

[3] Yeckel A., Compere J., Pandy A., Derby J. J., “Three-dimensional imperfections in a model vertical Bridgman system for cadmium zinc telluride”, J. of Crystal Growth, 263 (2004), 629–624 | DOI

[4] Bachran A., Reinshaus P., Seifert W., “Influence of thermal processing parameters and material properties on velocity configurations in semiconductor melts during the vertical Bridgman growth technique”, Cryst. Res. Technol., 33:1 (1998), 27–36 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] Kokh K. A., Popov V. N., Kokh A. E., et al., “Numerical modeling of melt flows in vertical Bridgman configuration affected by rotating heat field”, J. of Crystal Growth, 303 (2007), 253–257 | DOI

[6] Nepomnyaschikh A. I., Krasin B. A., Kokh A. E. i dr., “Rost multikristallicheskogo kremniya po metodu Stokbargera-Bridzhmena”, Tezisy III Rossiiskogo soveschaniya po rostu kristallov i plenok kremniya i issledovaniyu ikh fizicheskikh svoistv i strukturnogo sovershenstva “Kremnii-2006”, In-t fiziki im. L. V. Kirenskogo, Krasnoyarsk, 2006, 38

[7] Belskii S. S., Nemchinova N. V., Krasin B. A., “Izuchenie vliyaniya parametrov kristallizatsii na svoistva i strukturu multikremniya”, Sovremennye naukoemkie tekhnologii, 2006, no. 8, 21–25

[8] Harlow F. H., Welch J. E., “Numerical calculation of time-depend viscous incompressible flow of fluid with free surface”, Phys. Fluids, 8 (1965), 2182–2189 | DOI | Zbl

[9] Patankar S. V., Spalding D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, Int. J. Heat Mass Trans., 15 (1972), 1787–1806 | DOI | Zbl

[10] Chorin A. J., “A numerical method for solving incompressible viscous flow problems”, J. Comput. Phys., 2 (1967), 12–26 | DOI | Zbl

[11] Samarskii A. A., Nikolaev E. C., Metody reshenii setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR

[12] Basin A. S., Shishkin A. V., Poluchenie kremnievykh plastin dlya solnechnoi energetiki. Metody i tekhnologii, Institut teplofiziki SO RAN, Novosibirsk, 2000, 196 pp.