Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_6_a11, author = {I. A. Kozlitin}, title = {The modeling of {Holtzmark} distribution by the {Monte-Carlo} method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {147--156}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_6_a11/} }
I. A. Kozlitin. The modeling of Holtzmark distribution by the Monte-Carlo method. Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 147-156. http://geodesic.mathdoc.fr/item/MM_2010_22_6_a11/
[1] Grim G., Ushirenie spektralnykh linii v plazme, Mir, M., 1978
[2] Kalitkin N. N., Kozlitin I. A., “Samosoglasovannaya kompensirovannaya mikropolevaya model neidealnosti plazmy”, Matematicheskoe modelirovanie, 20:1 (2008), 61–76 | Zbl
[3] Levitan Yu. L., I. M. Sobol, “O datchike psevdosluchainykh chisel dlya personalnykh kompyuterov”, Matematicheskoe modelirovanie, 2:8 (1990), 119–126 | MR | Zbl
[4] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1967, 122–124 | MR
[5] Iglesias C. A., DeWitt H. E., Lebowitz J. T., McGowan D., Hubbard W. B., “Low-frequency electric microfield distribution in plasmas”, Phys. Rev. A, 31:3 (1985), 1698–1702 | DOI | MR
[6] Kalitkin N. N., Kozlitin I. A., “Model kvazinezavisimykh chastits dlya plazmennogo mikropolya”, DAN, 418:5 (2008), 614–618 | Zbl