The high accuracy asymptotics for a~least square spline error
Matematičeskoe modelirovanie, Tome 22 (2010) no. 5, pp. 67-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

An error is investigated for a least square spline of arbitrary power $p$ and all it's derivatives. The high accuracy approximation is constructed for dependence of an error coefficient on $p$.
Keywords: spline, least square, error.
@article{MM_2010_22_5_a5,
     author = {N. N. Kalitkin and L. V. Kuzmina},
     title = {The high accuracy asymptotics for a~least square spline error},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--68},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_5_a5/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
TI  - The high accuracy asymptotics for a~least square spline error
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 67
EP  - 68
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_5_a5/
LA  - ru
ID  - MM_2010_22_5_a5
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. V. Kuzmina
%T The high accuracy asymptotics for a~least square spline error
%J Matematičeskoe modelirovanie
%D 2010
%P 67-68
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_5_a5/
%G ru
%F MM_2010_22_5_a5
N. N. Kalitkin; L. V. Kuzmina. The high accuracy asymptotics for a~least square spline error. Matematičeskoe modelirovanie, Tome 22 (2010) no. 5, pp. 67-68. http://geodesic.mathdoc.fr/item/MM_2010_22_5_a5/

[1] K. de Bor, Prakticheskoe rukovodstvo po splainam, Radio i svyaz, 1985, 304 pp. | MR | Zbl

[2] N. N. Kalitkin, N. M. Shlyakhov, “V-splainy proizvolnoi stepeni”, DAN, 367:2 (1999), 157–160 | MR | Zbl