Calculations of bidimentional test problems by a~method of adaptive artificial viscosity
Matematičeskoe modelirovanie, Tome 22 (2010) no. 5, pp. 57-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Calculations 2D-dimentional test gas dynamics problems by a new, net method of adaptive artificial viscosity (AAV), in detail described in [1] and [2], generalized in [3] on a case of two and three measurements are resulted. In Cartesian coordinates in Eulerian variables in a rectangular and step areas the equations are considered. The equations become isolated the equation of a condition ideal gas. Test problems are taken from [4]–[6]. Comparison of the decision of these problems by method AAV and by other methods published in clauses [4]–[6] is spent.
Keywords: 2D-dimentional gas dynamics problems, method of adaptive artificial viscosity.
@article{MM_2010_22_5_a4,
     author = {I. V. Popov and I. V. Fryazinov},
     title = {Calculations of bidimentional test problems by a~method of adaptive artificial viscosity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_5_a4/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - I. V. Fryazinov
TI  - Calculations of bidimentional test problems by a~method of adaptive artificial viscosity
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 57
EP  - 66
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_5_a4/
LA  - ru
ID  - MM_2010_22_5_a4
ER  - 
%0 Journal Article
%A I. V. Popov
%A I. V. Fryazinov
%T Calculations of bidimentional test problems by a~method of adaptive artificial viscosity
%J Matematičeskoe modelirovanie
%D 2010
%P 57-66
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_5_a4/
%G ru
%F MM_2010_22_5_a4
I. V. Popov; I. V. Fryazinov. Calculations of bidimentional test problems by a~method of adaptive artificial viscosity. Matematičeskoe modelirovanie, Tome 22 (2010) no. 5, pp. 57-66. http://geodesic.mathdoc.fr/item/MM_2010_22_5_a4/

[1] Popov I. V., Fryazinov I. V., “Setochnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem iskusstvennoi vyazkosti”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy sedmogo Vserossiiskogo seminara (21–24 sentyabrya 2007, g. Kazan, Rossiya), izd-vo Kazanskogo gos. universiteta, Kazan, 2007, 223–230

[2] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 20:8 (2008), 48–60 | MR | Zbl

[3] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matematicheskoe modelirovanie, 22:1 (2010), 32–45

[4] Liska R., Wendroff B., Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, November 22, 2001, 57 pp. http://www.math.ntnu.no/conservation/

[5] Vasilevskii V. F., Vyaznikov K. V., Tishkin V. F., Favorskii A. P., Kvazimonotonnye raznostnye skhemy povyshennogo poryadka tochnosti na adaptivnykh setkakh neregulyarnoi struktury, Preprint No 124, IPM im. M. V. Keldysha AN SSSR, Moskva, 1990

[6] Holden H., Lie K.-A., Risebro N. H., An unconditionally stable method for the Euler equations, Preprint 1998-0.18 | MR

[7] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[8] Galanin M. P., Savenkov E. B., Tokareva S. A., “Reshenie zadach gazovoi dinamiki s udarnymi volnami RKDG-metodom”, Matematicheskoe modelirovanie, 20:11 (2008), 55–66 | MR | Zbl