The application of the statistical method and finite-difference method for low-temperature plasma diagnostics problem solution by the flat probe with Coulomb collisions
Matematičeskoe modelirovanie, Tome 22 (2010) no. 5, pp. 45-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the mathematical model, describing strongly ionized collisional plasma dynamics near the flat probe, is formulated. The mathematical model includes the Fokker–Planck equation and the Poisson equation. Two methods of getting solution are presented. One of these methods is the Monte-Carlo Method, other is combination of the splitting method and the Particle-In-Cell Method.
Keywords: the Monte-Carlo Method, the Particle-In-Cell Method, the splitting method, the probe
Mots-clés : the Fokker–Planck equation.
@article{MM_2010_22_5_a3,
     author = {I. A. Kudryavtseva and A. V. Panteleyev},
     title = {The application of the statistical method and finite-difference method for low-temperature plasma diagnostics problem solution by the flat probe with {Coulomb} collisions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--56},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_5_a3/}
}
TY  - JOUR
AU  - I. A. Kudryavtseva
AU  - A. V. Panteleyev
TI  - The application of the statistical method and finite-difference method for low-temperature plasma diagnostics problem solution by the flat probe with Coulomb collisions
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 45
EP  - 56
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_5_a3/
LA  - ru
ID  - MM_2010_22_5_a3
ER  - 
%0 Journal Article
%A I. A. Kudryavtseva
%A A. V. Panteleyev
%T The application of the statistical method and finite-difference method for low-temperature plasma diagnostics problem solution by the flat probe with Coulomb collisions
%J Matematičeskoe modelirovanie
%D 2010
%P 45-56
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_5_a3/
%G ru
%F MM_2010_22_5_a3
I. A. Kudryavtseva; A. V. Panteleyev. The application of the statistical method and finite-difference method for low-temperature plasma diagnostics problem solution by the flat probe with Coulomb collisions. Matematičeskoe modelirovanie, Tome 22 (2010) no. 5, pp. 45-56. http://geodesic.mathdoc.fr/item/MM_2010_22_5_a3/

[1] Bernstein I. B., Rabinowitz I. N., “Theory of Electrostatic probes in low-density plasma”, Phys. Fluids, 2:2 (1959), 112–121 | DOI | Zbl

[2] Alpert Ya. L., Gurevich A. V., Pitaevskii L. P., Iskusstvennye sputniki v razrezhennoi plazme, Nauka, M., 1964, 282 pp.

[3] Chan P., Telbot L., Turyan K., Elektricheskie zondy v nepodvizhnoi i dvizhuscheisya plazme, Mir, M., 1978, 202 pp.

[4] Alekseev B. V., Kotelnikov V. A., Zondovyi metod diagnostiki plazmy, Energoatomizdat, M., 1989, 240 pp.

[5] Panteleev A. V., Kudryavtseva I. A., “Formirovanie matematicheskoi modeli dvukhkomponentnoi plazmy s uchetom stolknovenii zaryazhennykh chastits v sluchae ploskogo zonda”, Teoreticheskie voprosy vychislitelnoi tekhniki i programmnogo obespecheniya, Mezhvuzovskii sbornik nauchnykh trudov, MIREA, M., 2006, 11–21

[6] Older B., Vychislitelnye metody v fizike plazmy, Mir, M., 1974, 111 pp.

[7] Montgomery D. C., Tidman D. A., Plasma kinetic theory, New York, 1964

[8] Kudryavtseva I. A., Panteleev A. V., “Primenenie metoda Monte-Karlo dlya analiza povedeniya dvukhkomponentnoi plazmy s uchetom stolknovenii mezhdu zaryazhennymi chastitsami”, Teoreticheskie voprosy vychislitelnoi tekhniki i programmnogo obespecheniya, Mezhvuzovskii sbornik nauchnykh trudov, MIREA, M., 2008, 122–128

[9] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973, 311 pp. | MR

[10] Kireev V. I., Panteleev A. V., Chislennye metody v primerakh i zadachakh, Vysshaya shk., M., 2006, 480 pp.

[11] Belotserkovskii O. M., Davydov Yu. M., Metod krupnykh chastits v gazovoi dinamike. Vychislitelnyi eksperiment, Nauka, Fizmatgiz, M., 1982

[12] Verzhbitskii V. M., Osnovy chislennykh metodov, Vysshaya shkola, M., 2002, 840 pp.