Explicit-implicit numerical algorithms for porous media multiphase flow problems
Matematičeskoe modelirovanie, Tome 22 (2010) no. 4, pp. 118-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theoretical study on applied problems of oil and gas recovery is based on mathematical models for multiphase fluid flows in porous media. The basic model includes the continuity equation and the Darcy laws for each phase as well as the algebraic expression for the sum of saturations. A numerical algorithm is constructed using the pressure equation. In the present work there are discussed the basic conservation properties for the differential models and the necessity of their fulfillment at the discrete level. Explicit-implicit consistent approximations are constructed for multi-component flows in porous media along with the operator-splitting schemes for compressible media.
Keywords: multiphase flow, splitting scheme.
Mots-clés : explicit-implicit algorithms
@article{MM_2010_22_4_a8,
     author = {P. N. Vabishchevich},
     title = {Explicit-implicit numerical algorithms for porous media multiphase flow problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {118--128},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_4_a8/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Explicit-implicit numerical algorithms for porous media multiphase flow problems
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 118
EP  - 128
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_4_a8/
LA  - ru
ID  - MM_2010_22_4_a8
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Explicit-implicit numerical algorithms for porous media multiphase flow problems
%J Matematičeskoe modelirovanie
%D 2010
%P 118-128
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_4_a8/
%G ru
%F MM_2010_22_4_a8
P. N. Vabishchevich. Explicit-implicit numerical algorithms for porous media multiphase flow problems. Matematičeskoe modelirovanie, Tome 22 (2010) no. 4, pp. 118-128. http://geodesic.mathdoc.fr/item/MM_2010_22_4_a8/

[1] J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, 1988

[2] G. Dagan, Flow and Transport in Porous Formations, Springer-Verlag, New York, 1989

[3] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and Its Applications, North-Holland, 1990 | MR | Zbl

[4] J. L. Vazquez, The porous medium equation, Oxford Mathematical Monographs. Mathematical theory, The Clarendon Press, Oxford; Oxford University Press, Oxford, 2007 | MR

[5] D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Developments in Petroleum Science, Elsevier Scientific Pub. Co, 1977

[6] Y. Ma, Z. Chen, G. Huan, Computational Methods for Multiphase Flows in Porous Media, Society for Industrial and Applied Mathematic, 2006 | MR

[7] A. A. Samarskii, The theory of difference schemes, Monographs and Textbooks in Pure and Applied Mathematics, 240, Marcel Dekker Inc., New York, 2001 | MR | Zbl

[8] P. Knabner, L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer-Verlag, New York, 2003 | MR | Zbl

[9] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl

[10] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, PA, 1995 | MR

[11] K. Aziz, A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, 1979

[12] T. Ertekin, Basic Applied Reservoir Simulation, Society of Petroleum Engineers, 2001 | Zbl

[13] G. I. Marchuk, “Splitting and alternating direction methods”, Handbook of Numerical Analysis, v. 1, eds. P. G. Ciarlet, J.-L. Lions, North–Holland, Amsterdam, 1990, 197–462 | MR | Zbl

[14] A. A. Samarskii, P. N. Vabischevich, Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, Moskva, 1999 | MR

[15] A. Friedman, Partial Differential Equations of Parabolic Type, Krieger Pub. Co, 1983

[16] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001 | MR | Zbl

[17] A. Samarskii, E. Nikolaev, Numerical Methods for Grid Equations, v. 1, 2, Birkhauser Verlag, Basel, 1989 | Zbl

[18] L. Hageman, D. Young, Applied Iterative Methods, Academic Press, New York, 1981 | MR | Zbl

[19] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer-Verlag, New York, 1994 | MR

[20] A. A. Samarskii, A. V. Koldoba, Yu. A. Poveschenko, V. F. Tishkin, A. P. Favorskii, Raznostnye skhemy na neregulyarnykh setkakh, Minsk, 1996

[21] M. J. Shashkov, Conservative finite-difference methods on general grids, CRC Press, Boca Raton, FL, 1996 | MR | Zbl

[22] N. Robidoux, S. Steinberg, A discrete vector calculus in tensor grids, 2002 http://math.unm.edu/~stanly/

[23] P. N. Vabishchevich, “Finite-difference approximation of mathematical physics problems on irregular grids”, Computational Methods in Applied Mathematics, 5:3 (2005), 294–330 | MR | Zbl

[24] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Chapman Hall, New York, 1996 | MR | Zbl

[25] A. A. Samarskii, P. N. Vabischevich, Chislennye metody resheniya zadach konvektsii-diffuzii, Izd-vo URSS, M., 2003