On stability of small perturbations for a~modified two-dimensional quasi-gasdynamic model of traffic flows
Matematičeskoe modelirovanie, Tome 22 (2010) no. 4, pp. 110-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new modified two-dimensional quasi-gasdynamic model of traffic flows is studied. Both sufficient and necessary conditions are derived for stability of perturbations harmonic in space with respect to a constant background in linearized statement.
Mots-clés : quasi-gasdynamic model
Keywords: traffic flows.
@article{MM_2010_22_4_a7,
     author = {A. A. Zlotnik},
     title = {On stability of small perturbations for a~modified two-dimensional quasi-gasdynamic model of traffic flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--117},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_4_a7/}
}
TY  - JOUR
AU  - A. A. Zlotnik
TI  - On stability of small perturbations for a~modified two-dimensional quasi-gasdynamic model of traffic flows
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 110
EP  - 117
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_4_a7/
LA  - ru
ID  - MM_2010_22_4_a7
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%T On stability of small perturbations for a~modified two-dimensional quasi-gasdynamic model of traffic flows
%J Matematičeskoe modelirovanie
%D 2010
%P 110-117
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_4_a7/
%G ru
%F MM_2010_22_4_a7
A. A. Zlotnik. On stability of small perturbations for a~modified two-dimensional quasi-gasdynamic model of traffic flows. Matematičeskoe modelirovanie, Tome 22 (2010) no. 4, pp. 110-117. http://geodesic.mathdoc.fr/item/MM_2010_22_4_a7/

[1] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[2] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[3] Karamzin Yu. N., Trapeznikova M. A., Chetverushkin B. N., Churbanova N. G., “Dvumernaya model avtomobilnykh potokov”, Matem. modelirovanie, 18:6 (2006), 85–95 | Zbl

[4] Sukhinova A. B., Trapeznikova M. A., Chetverushkin B. N., Churbanova N. G., “Dvumernaya makroskopicheskaya model transportnykh potokov”, Matem. modelirovanie, 21:2 (2009), 118–126 | Zbl

[5] Sheretov Yu. V., “Analiz zadachi o rasprostranenii zvuka dlya linearizovannykh KGD-sistem”, Primenenie funktsionalnogo anal. v teorii priblizhenii, Tverskoi GU, Tver, 2001, 178–191

[6] Dorodnitsyn L. V., “Ob ustoichivosti malykh kolebanii v kvazigazodinamicheskoi sisteme uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1299–1305 | MR | Zbl

[7] Zlotnik A. A., Zlotnik I. A., “Kriterii ustoichivosti malykh vozmuschenii dlya kvazigazodinamicheskoi sistemy uravnenii”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 262–269 | MR | Zbl

[8] Zlotnik A. A., Chetverushkin B. N., “O parabolichnosti kvazigazodinamicheskoi sistemy uravnenii, ee giperbolicheskoi 2-go poryadka modifikatsii i ustoichivosti malykh vozmuschenii dlya nikh”, Zh. vychisl. matem. i matem. fiz., 48:3 (2008), 445–472 | MR | Zbl

[9] Zlotnik A. A., “O nekotorykh svoistvakh uravnenii dvumernoi kvazigazodinamicheskoi modeli transportnykh potokov”, Zh. vychisl. matem. i matem. fiz., 49:2 (2009), 373–381 | MR

[10] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl