On an explicit scheme for filtration problem solution
Matematičeskoe modelirovanie, Tome 22 (2010) no. 4, pp. 99-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the consideration of the different models of compressible fluid filtration. As compared to the classical equation system, the discontinuity equation is modified taking into account the minimum scale of space averaging and system internal relaxation time. Three-level explicit finite difference schemes are proposed convenient for parallel implementation. Because of changing of equation system type from parabolic to hyperbolic one, the stability requirements become softer as compared to the two-level schemes.
Keywords: flows in porous media, kinetic schemes, parabolic and hyperbolic systems of equations, three-level explicit schemes.
@article{MM_2010_22_4_a6,
     author = {B. N. Chetverushkin and D. N. Morozov and M. A. Trapeznikova and N. G. Churbanova and E. V. Shilnikov},
     title = {On an explicit scheme for filtration problem solution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--109},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_4_a6/}
}
TY  - JOUR
AU  - B. N. Chetverushkin
AU  - D. N. Morozov
AU  - M. A. Trapeznikova
AU  - N. G. Churbanova
AU  - E. V. Shilnikov
TI  - On an explicit scheme for filtration problem solution
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 99
EP  - 109
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_4_a6/
LA  - ru
ID  - MM_2010_22_4_a6
ER  - 
%0 Journal Article
%A B. N. Chetverushkin
%A D. N. Morozov
%A M. A. Trapeznikova
%A N. G. Churbanova
%A E. V. Shilnikov
%T On an explicit scheme for filtration problem solution
%J Matematičeskoe modelirovanie
%D 2010
%P 99-109
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_4_a6/
%G ru
%F MM_2010_22_4_a6
B. N. Chetverushkin; D. N. Morozov; M. A. Trapeznikova; N. G. Churbanova; E. V. Shilnikov. On an explicit scheme for filtration problem solution. Matematičeskoe modelirovanie, Tome 22 (2010) no. 4, pp. 99-109. http://geodesic.mathdoc.fr/item/MM_2010_22_4_a6/

[1] Vinter B., “Next generation processors”, Parallel, distributed and grid computing for engineering, Saxe-Coburg Publications, 2009, 21–36

[2] Resch M. M., “Trends in architectures and methods for high perfomance computing simulation”, Parallel, distributed and grid computing for engineering, Saxe-Coburg Publications, 2009, 37–48

[3] Chetverushkin B. N., “High-perfomance computing: Fundamental problems in industial application”, Parallel, distributed and grid computing for engineering, Saxe-Coburg Publications, 2009, 369–388

[4] Savin G. I. i dr., “Modelirovanie zadach gazovoi dinamiki i akustiki s ispolzovaniem resursov superkompyuterov MVS-100K”, DAN, 423:3 (2008), 312–312

[5] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984, 352 pp. | MR | Zbl

[6] Trapeznikova M. A., Belotserkovskaya M. S., Chetverushkin B. N., “Analog kineticheski-soglasovannykh skhem dlya modelirovaniya zadach filtratsii”, Matematicheskoe modelirovanie, 14:10 (2002), 69–76 | MR | Zbl

[7] Chetverushkin B. N., Kinetic schemes and quasi-gas dynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.

[8] Chetverushkin B. N., “K voprosu ob ogranichenii snizu na masshtaby v mekhanike sploshnoi sredy”, Trudy seminara “Vremya, khaos, matematicheskie problemy”, 4, Izd-vo MGU, 2009, 75–96

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[10] Basniev K. S., Kochina I. N., Maksimov V. M., Podzemnaya gidromekhanika, Nedra, M., 1993