Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_3_a8, author = {Y. V. Bibik and D. A. Sarancha}, title = {Canonical variables for some biological models}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {120--144}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_3_a8/} }
Y. V. Bibik; D. A. Sarancha. Canonical variables for some biological models. Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 120-144. http://geodesic.mathdoc.fr/item/MM_2010_22_3_a8/
[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976 | MR
[2] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony, Nauka, M., 1991 | MR | Zbl
[3] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[5] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959
[6] Bazykin A. D., Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985 | MR | Zbl
[7] Bazykin A. D., Berezovskaya F. S., Denisov G. A., Kuznetsov Yu. A., “Vliyanie effekta nasyscheniya khischnika i konkurentsii mezhdu khischnikami na dinamiku sistemy khischnik-zhertva”, Dinamicheskie modeli i ekologiya populyatsii, DVNTs AN SSSR, Vladivostok, 1981
[8] Gauze G. F., Vitt A. A., “O periodicheskikh kolebaniyakh chislennosti populyatsii. Matematicheskaya teoriya relaksatsionnogo vzaimodeistviya mezhdu khischnikami i zhertvami i ee primenenie k populyatsii dvukh prosteishikh”, Izv. AN SSSR. Seriya 7, 1934, 1551–1559
[9] Kolesov A. Yu., Kolesov Yu. S., Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii, Tr. MIRAN, 199, 1993 | Zbl
[10] Kolmogorov A. N., Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii, Problemy kibernetiki, 25, Nauka, M., 1972
[11] Nedorezov L. V., Modelirovanie vspyshek massovykh razmnozhenii nasekomykh, Nauka, Novosibirsk, 1986
[12] Pykh Yu. A., Ravnovesie i ustoichivost v modelyakh populyatsionnoi dinamiki, Nauka, M., 1983 | MR
[13] Riznichenko G. Yu., Rubin A. B., Matematicheskie modeli biologicheskikh produktsionnykh protsessov, Izd-vo MGU, M., 1993
[14] Svirezhev Yu. M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 | MR | Zbl
[15] May R. M., “Biological population obeying difference equetions: stable points, stable cycles and chaos”, J. Theor. Biol., 51:2 (1975), 511–524 | DOI
[16] Maynard Smith J., Models in ecology, Cambridge University Press, London–NY, 1974 | Zbl
[17] Murray J. D., Mathematical biology, Springer-Verlag, 1993 | MR
[18] Moser J., “Three integrable Hamiltonian systems, connected with isospectral deformations”, Adv. in Math., 16 (1975), 197–220 | DOI | MR | Zbl
[19] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR
[20] Adler M., “On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg-de Vries type equetions”, Inv. Math., 50:2 (1979), 219–248 | MR | Zbl
[21] Vilazi G., Gamiltonova dinamika, Institut kompyuternykh issledovanii, NITs, “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2006
[22] Prasolov V. V., Solovev Yu. P., Ellipticheskie krivye i algebraicheskie uravneniya, Faktorial, M., 1997