Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_3_a6, author = {B. N. Klochkov}, title = {Autowave processes in cell structures}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {91--104}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_3_a6/} }
B. N. Klochkov. Autowave processes in cell structures. Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 91-104. http://geodesic.mathdoc.fr/item/MM_2010_22_3_a6/
[1] Klochkov B. N., Kuznetsov S. O., Tolkov V. N., “Matematicheskoe modelirovanie ritma volnovoi aktivnosti kardiomiotsita”, Bioritmicheskie i samoorganizatsionnye protsessy v serdechno-sosudistoi sisteme, Sb. nauchn. tr., IPF RAN, N. Novgorod, 1992, 43–57
[2] Klochkov B. N., “Matematicheskoe modelirovanie aktivnykh volnovykh protsessov v tkani”, Vestnik Nizhegorodskogo universiteta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 17, Izd-vo NNGU, N. Novgorod, 1997, 81–93
[3] Kanysheva S. A., Klochkov B. N., Tolkov V. N., Yakhno V. G., “Modelirovanie dinamicheskikh struktur v myshechnoi tkani”, Meditsinskaya biomekhanika, Tez. dokl. mezhdunar. konf. “Dostizheniya biomekhaniki v meditsine”, T. 4, Minzdrav Latv. SSR, Riga, 1986, 145–150
[4] Klochkov B. N., Yakhno V. G., Matematicheskoe opisanie cpontannykh volnovykh sokraschenii myshechnoi kletki, Preprint No 137, IPF AN SSSR, Gorkii, 1986, 26 pp.
[5] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., “Avtovolnovye protsessy v raspredelennykh kineticheskikh sistemakh”, Uspekhi fizich. nauk, 128:4 (1979), 625–666 | MR
[6] Golovina V. A., Rozenshtraukh L. V., Solovev B. S., Undrovinas A. I., Chernaya G. G., “Volnoobraznye spontannye sokrascheniya izolirovannykh kardiomiotsitov”, Biofizika, 31:2 (1986), 283–289
[7] Chernaya G. G., “Diffuzionnyi analog volny goreniya v sisteme s diskretnymi istochnikami”, Prikladnaya matematika i mekhanika, 50:6 (1986), 996–1005 | Zbl
[8] Takamatsu T., Wier W. G., “Calcium waves in mammalian heart: quantification of origin, magnitude, waveform and velocity”, FASEB Journal, 4:5 (1990), 1519–1525
[9] Capogrossi M. C., Lakatta E. G., “Frequency modulation and synchronization of spontaneous oscillation in cardiac cells”, Amer. J. Physiol., 248:17 (1985), H412–H418
[10] Stern M. D., Capogrossi M. C., Lakatta E. G., “Propagated contractile waves in single cardiac myocytes modeled as regenerative calcium induced calcium release from the sarcoplasmic reticulum”, Biophys. J., 45:2, part 2 (1984), 94a
[11] Ishide N., Urayama T., Inoue K.-I., Komary T., Takishima T., “Propagation and collision characteristics of calcium waves in rat myocytes”, Amer. J. Physiol., 259 (1990), H940–H950
[12] Kort A. A., Lakatta E. G., “Calcium – dependent mechanical oscillations occur spontaneously in unstimulated mammalian cardiac tissues”, Circ. Res., 54:4 (1984), 396–404
[13] Allen D. G., Eisner D. A., Orchard C. H., “Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle”, J. Physiol., 352 (1984), 113–128
[14] Coleman A. W., Coleman J. R., Griffin J. D., Weltman J. K., Chapman K. M., “Methylxanthine-induced escalation: a propagated wave phenomenon observed in skeletal muscle developing in culture”, Proc. Nat. Acad. Sci. USA, 69:3 (1972), 613–616 | DOI
[15] Fabiato A., “Calcium – induced release of calcium from the cardiac sarcoplasmic reticulum”, Amer. J. Physiol., 245 (1983), C1–C14