Identifying diagonal element for iterations speedup at numerical solution of heat radiation transport equation in kinetic approximation
Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 93-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considered are modification of the algorithm of the method of identifying the diagonal element for iterative solution of implicit finite-differential equations approximating the nonlinear system of nonstationary differential equations consisting of the spectral integro-differential kinetic equation of photon transport and the energy equation. The investigation is conducted by the example of the St-scheme of the discrete ordinate method in plane geometry. Presented are theoretical estimations of iterative convergence rate and an example of a test problem.
Keywords: time-dependent transport equation, radiative transfer theory, iteration method, finite-difference scheme.
@article{MM_2010_22_2_a6,
     author = {V. V. Zaviyalov and A. A. Shestakov},
     title = {Identifying diagonal element for iterations speedup at numerical solution of heat radiation transport equation in kinetic approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_2_a6/}
}
TY  - JOUR
AU  - V. V. Zaviyalov
AU  - A. A. Shestakov
TI  - Identifying diagonal element for iterations speedup at numerical solution of heat radiation transport equation in kinetic approximation
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 93
EP  - 104
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_2_a6/
LA  - ru
ID  - MM_2010_22_2_a6
ER  - 
%0 Journal Article
%A V. V. Zaviyalov
%A A. A. Shestakov
%T Identifying diagonal element for iterations speedup at numerical solution of heat radiation transport equation in kinetic approximation
%J Matematičeskoe modelirovanie
%D 2010
%P 93-104
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_2_a6/
%G ru
%F MM_2010_22_2_a6
V. V. Zaviyalov; A. A. Shestakov. Identifying diagonal element for iterations speedup at numerical solution of heat radiation transport equation in kinetic approximation. Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 93-104. http://geodesic.mathdoc.fr/item/MM_2010_22_2_a6/

[1] Miller W. F. (Jr.), “Generalized Rebalance: A Common Framework for Transport Acceleration Methods”, Nucl. Sci. Eng., 65 (1978), 226

[2] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[3] Larsen E. W., “Unconditionally Stable Diffusion Acceleration of the Transport Equation”, Transport Theory Statist. Phys., 11 (1982), 29 | DOI | MR | Zbl

[4] Lorence L. J. (Jr.), Larsen E. W., Morel J. E., “An S2 Synthetic Acceleration Scheme for the One-Dimensional Sn Equations”, Trans. Am. Nucl. Soc., 52 (1986), 417

[5] Ramone G. L., Adams M. L., Nowak P. E., “A Transport Synthetic Acceleration Method for Transport Iterations”, Nucl. Sci. Eng., 125 (1997), 257

[6] Goldin V. Ya., “Kvazidifuzionnyi metod resheniya kineticheskogo uravneniya”, ZhVMiMF, 4:6 (1964), 1078–1087 | MR

[7] Fedotova L. P., Shagaliev R. M., “Konechno-raznostnyi KM-metod dlya matematicheskogo modelirovaniya dvumernykh nestatsionarnykh protsessov perenosa v mnogogruppovom kineticheskom priblizhenii”, Matematicheskoe modelirovanie, 3:6 (1991), 29–41

[8] Morozov V. N., “O reshenii kineticheskikh uravnenii s pomoschyu $Sn$-metoda”, Teoriya i metody rascheta yadernykh reaktorov, Gosatomizdat, M., 1962, 91–117

[9] Larsen E. W., “A Grey Transport Acceleration Method for Thermal Radiative Transfer Problems”, J. Comp. Phys., 78 (1988), 459 | DOI | Zbl

[10] Elesin V. A., Troschiev V. E., Yudintsev V. F., Chislennoe reshenie spektralnykh zadach perenosa teplovogo izlucheniya iteratsionnymi metodami popravok, Sbornik nauchnykh trudov, Arzamas-16, M., 1994

[11] Gusev V. Yu., Kozmanov M. Yu., Rachilov E. B., “Metod resheniya neyavnykh raznostnykh uravnenii, approksimiruyuschikh sistemy uravnenii perenosa i diffuzii izlucheniya”, ZhVMiMF, 24:12 (1984), 1842–1849 | MR | Zbl

[12] Gusev V. Yu., Zavyalov V. V., Kozmanov M. Yu., “Ob uskorenii skhodimosti iteratsii dlya sistemy perenosa teplovogo izlucheniya v kineticheskom priblizhenii”, VANT. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 2003, no. 2, 21–27 | MR

[13] Gadzhiev A. D., Seleznev V. N., Shestakov A. A., “DSn metod s iskusstvennoi dissipatsiei i VDM-metod uskoreniya iteratsii dlya chislennogo resheniya dvumernogo uravneniya perenosa teplovogo izlucheniya v kineticheskoi modeli”, VANT. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 2003, no. 2, 33–46 | MR

[14] Shestakov A. A., “Ob odnom variante metoda vydeleniya diagonalnogo elementa”, VANT, 1990, no. 2, 71–75

[15] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985 | Zbl

[16] Fleck J. A., Cummings J. D., “An Implicit Monte-Carlo Scheme for Calculating Time and Frequency Dependent Nonlinear Radiation Transport”, J. Comput. Phys., 8:3 (1971), 313–342 | DOI | MR | Zbl