Approximation of smooth surfaces with the double period method
Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 64-68

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method is targeted for approximations of smooth non-periodical $2d$ functions. The idea used for this method is based on special trigonometric mean-square decomposition. Such approach produces smooth approximation and rapidly decreasing decomposition coefficients. The constructed approximations give good precision even on the marginal tabulation area. This allows reasonable extrapolation. The method is illustrated with samples, including practical problems.
@article{MM_2010_22_2_a3,
     author = {N. N. Kalitkin and K. I. Lutskiy},
     title = {Approximation of smooth surfaces with the double period method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {64--68},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_2_a3/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - K. I. Lutskiy
TI  - Approximation of smooth surfaces with the double period method
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 64
EP  - 68
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_2_a3/
LA  - ru
ID  - MM_2010_22_2_a3
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A K. I. Lutskiy
%T Approximation of smooth surfaces with the double period method
%J Matematičeskoe modelirovanie
%D 2010
%P 64-68
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_2_a3/
%G ru
%F MM_2010_22_2_a3
N. N. Kalitkin; K. I. Lutskiy. Approximation of smooth surfaces with the double period method. Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 64-68. http://geodesic.mathdoc.fr/item/MM_2010_22_2_a3/