Construction of Cartesian meshes with dynamic adaptation to the solution
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 86-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper there are proposed algorithms of building of hierarchical locally-refined Cartesian computational meshes with dynamic adaptation to the obtained solution. The algorithms are tested on the solution of linear transport equation.
@article{MM_2010_22_1_a6,
     author = {A. A. Sukhinov},
     title = {Construction of {Cartesian} meshes with dynamic adaptation to the solution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {86--98},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a6/}
}
TY  - JOUR
AU  - A. A. Sukhinov
TI  - Construction of Cartesian meshes with dynamic adaptation to the solution
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 86
EP  - 98
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a6/
LA  - ru
ID  - MM_2010_22_1_a6
ER  - 
%0 Journal Article
%A A. A. Sukhinov
%T Construction of Cartesian meshes with dynamic adaptation to the solution
%J Matematičeskoe modelirovanie
%D 2010
%P 86-98
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a6/
%G ru
%F MM_2010_22_1_a6
A. A. Sukhinov. Construction of Cartesian meshes with dynamic adaptation to the solution. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 86-98. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a6/

[1] Frey P. J., George P-L., Mesh Generation: Application to Finite Elements, HERMES Science Publishing, Oxford, UK, 2000 | MR | Zbl

[2] Liseikin V. D., Grid Generation Methods, Springer-Verlag, Berlin, 1999 | MR | Zbl

[3] Aftosmis M. J., Solution adaptive Cartesian grid methods for aerodynamic flows with complex geometries, Lecture Notes for 28th CFD Lecture Series, von Karman Institute for Fluid Dynamics, Belgium, 1997, 108 pp.

[4] Trangenstein J. A., “Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media”, Advances in Water Resources, 25 (2002), 1175–1213 | DOI

[5] Chetverushkin B., Churbanova N., Malinovskij A., Sukhinov A., Trapeznikova M., “Adaptive Mesh Refinement for Simulation of Contaminant Transport in Oil Recovery Problems”, Adaptive Modeling and Simulation 2007, Proc. of the III Int. Conf. (Goeteborg, Sweden, 22–24 October, 2007), eds. K. Runesson, P. Diez, CIMNE, Barcelona, 2007, 73–76

[6] Chetverushkin Boris, Churbanova Natalia, Malinovskij Anton, Soukhinov Anton, Trapeznikova Marina, “Parallel simulation of flows in porous media using adaptive locally-refined meshes”, Parallel Computational Fluid Dynamics 2007, Proc. of the Parallel CFD 2007 Conf. (Antalya, Turkey, 21–24 May, 2007), Lecture Notes in Computational Science and Engineering, 67, Springer, Berlin–Heidelberg, 2009, 371–378

[7] Berger M. J., Aftosmis M. J., “Aspects (and Aspect Ratios) of Cartesian Mesh Methods”, Proc. of the 16th Int. Conf. on Numerical Methods in Fluid Dynamics (Arcachon, France, 6–10 July, 1998), Springer-Verlag, Heidelberg, Germany | MR

[8] Hannoun N., Alexiades V., “Issues in Adaptive Mesh Refinement Implementation”, Proceedings of the Sixth Mississippi State–UBA Conference on Differential Equations and Computational Simulations, Electron. J. Differ. Equ. Conf., 15, Southwest Texas State Univ., San Marcos, TX, 2007, 141–151 | MR

[9] Finkel R. A., Bentley J. L., “Quad trees: A Data Structure for Retrieval on Composite Keys”, Acta Informatica, 4:1 (1974), 1–9 | DOI | Zbl