Numerical integration of ordinary differential equations using orthogonal expansions
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 69-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider numerical methods of approximate solving Cauchy problems for systems of ordinary differential equations of first and second orders. These methods are based on the expansions of the solution and its derivative at each integration step into shifted Chebyshev series by Chebyshev polynomials of the first kind. Some relations connecting Chebyshev coefficients of the solution with Chebyshev coefficients of the right-hand side of the system being solved are obtained. Several equations for approximate values of Chebyshev coefficients for the right-hand side of the system are deduced. An iterative process of their solution is described. Some error estimates for approximate Chebyshev coefficients and for an approximate solution relative to the step size are given.
@article{MM_2010_22_1_a5,
     author = {S. F. Zaletkin},
     title = {Numerical integration of ordinary differential equations using orthogonal expansions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--85},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a5/}
}
TY  - JOUR
AU  - S. F. Zaletkin
TI  - Numerical integration of ordinary differential equations using orthogonal expansions
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 69
EP  - 85
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a5/
LA  - ru
ID  - MM_2010_22_1_a5
ER  - 
%0 Journal Article
%A S. F. Zaletkin
%T Numerical integration of ordinary differential equations using orthogonal expansions
%J Matematičeskoe modelirovanie
%D 2010
%P 69-85
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a5/
%G ru
%F MM_2010_22_1_a5
S. F. Zaletkin. Numerical integration of ordinary differential equations using orthogonal expansions. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 69-85. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a5/

[1] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebyshëva, Nauka, M., 1983 | MR

[2] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo Mosk. un-ta, M., 1984 | MR

[3] Tatevyan S. K., Sorokin N. A., Zaletkin S. F., “Formula chislennogo integrirovaniya Markova i ee primenenie v ortogonalnykh razlozheniyakh”, Vychislitelnye metody i programmirovanie, 2:2 (2001), 44–70

[4] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz. Nachalnyi kurs, Izd-vo Mosk. un-ta, M., 1985

[5] Berezin I. S., Zhidkov N. P., Metody vychislenii, T. 1, 2, Fizmatgiz, M., 1962 | MR

[6] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl