Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 32-45

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered a method of adaptive artificial viscosity (АAV2D-3D) of decision for two- and three-dimensional equations of gas dynamics for the Euler variables in the Cartesian coordinates system. This paper continues the works [1], [2]. The computational scheme is described in detail, and the results of test case are given.
@article{MM_2010_22_1_a2,
     author = {I. V. Popov and I. V. Fryazinov},
     title = {Adaptive artificial viscosity for gas dynamics for the {Euler} variables in {Cartesian} coordinates},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {32--45},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a2/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - I. V. Fryazinov
TI  - Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 32
EP  - 45
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a2/
LA  - ru
ID  - MM_2010_22_1_a2
ER  - 
%0 Journal Article
%A I. V. Popov
%A I. V. Fryazinov
%T Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates
%J Matematičeskoe modelirovanie
%D 2010
%P 32-45
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a2/
%G ru
%F MM_2010_22_1_a2
I. V. Popov; I. V. Fryazinov. Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 32-45. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a2/