On derivative based global sensitivity criteria
Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 137-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a mathematical model $f(x)$ defined in the $n$-dimensional unit cube, $x=(x_1,\dots,x_n)$. How to estimate the global sensitivity of $f(x)$ with respect to $x_i$? If $f(x)\in L_2$, global sensitivity indeces provide practical answers to the question. Derivative based criteria are less reliable but sometimes easier for computing. In this note a new derivative based global sensitivity criterion is compared with the correspondding global sensitivity index. It is proved that in the special case when $f(x)$ is a linear function of $x_i$, the estimates are equal. However the Monte Carlo approximations to the derivative based criterion converge faster. Thus the derivative based criterion may be useful in situations when the dependence of $f(x)$ on $x_i$ is near to linear. It can also be applied for detecting nonessential variables $x_i$.
Keywords: sensitivity analysis, mathematical model, method Monte Carlo, variance, global sensitivity indices.
@article{MM_2010_22_12_a9,
     author = {I. M. Sobol},
     title = {On derivative based global sensitivity criteria},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {137--143},
     publisher = {mathdoc},
     volume = {22},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a9/}
}
TY  - JOUR
AU  - I. M. Sobol
TI  - On derivative based global sensitivity criteria
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 137
EP  - 143
VL  - 22
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_12_a9/
LA  - ru
ID  - MM_2010_22_12_a9
ER  - 
%0 Journal Article
%A I. M. Sobol
%T On derivative based global sensitivity criteria
%J Matematičeskoe modelirovanie
%D 2010
%P 137-143
%V 22
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_12_a9/
%G ru
%F MM_2010_22_12_a9
I. M. Sobol. On derivative based global sensitivity criteria. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 137-143. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a9/

[1] I. M. Sobol, “Globalnye pokazateli chuvstvitelnosti dlya izucheniya nelineinykh matematicheskikh modelei”, Matem. modelirovanie, 17:9 (2005), 43–52 ; “Дополнение”, Матем. моделирование, 19:11 (2007), 23–24 | MR | Zbl | MR | Zbl

[2] I. M. Sobol', S. Kucherenko, “Derivative based global sensitivity measures and their link with global sensitivity indices”, Maths and Computers in Simulation, 79 (2009), 3009–3017 | DOI | MR | Zbl

[3] F. Campolongo, J. Caribon, A. Saltelli, “An effective screening design for sensitivity analysis of large models”, Environmental Modelling and Software, 22 (2007), 1509–1518 | DOI

[4] A. Kiparissides, S. S. Kucherenko, A. Mantalaris, E. N. Pistikopoulos, “Global Sensitivity Analysis challenges in biological systems modeling”, Industrial and Engineering Chemistry Research, 48 (2009), 7168 | DOI