Numerical analysis of new model of metals cristallization processes, one-dimensional case
Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 82-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the numerical analysis of new model of metals crystallization processes. The novelty of the model under consideration, which only recently appears in the literature, is in the situation when modeling is performed simultaneously for several scales, from micro to macro. Though now the experimental researches establish the multiplicity of the details of crystallization process, the general theoretical view of this process does not exist. The model which is used in the present paper is based on the description of a space occupied by the crystallizing alloy as the porous medium. The propagation of perturbations in such a medium is described by the equations of Biot's type. The emergence of germs is described by modified Kahn–Hilliard equation. The relevant numerical scheme is constructed and its convergence property is demonstrated. It is also shown the possibility to model different crystallization regimes when changing the parameters of the model. The multi-D variant with the usage of multiprocessor calculation complex is planed to be studied in the subsequent publications.
Keywords: alloys crystallization, Biot model, porous medium, numerical methods for nonlinear systems.
Mots-clés : Kahn–Hilliard equation
@article{MM_2010_22_12_a6,
     author = {Yuri Rykov and Nikolai Zaitsev},
     title = {Numerical analysis of new model of metals cristallization processes, one-dimensional case},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {82--102},
     publisher = {mathdoc},
     volume = {22},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a6/}
}
TY  - JOUR
AU  - Yuri Rykov
AU  - Nikolai Zaitsev
TI  - Numerical analysis of new model of metals cristallization processes, one-dimensional case
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 82
EP  - 102
VL  - 22
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_12_a6/
LA  - ru
ID  - MM_2010_22_12_a6
ER  - 
%0 Journal Article
%A Yuri Rykov
%A Nikolai Zaitsev
%T Numerical analysis of new model of metals cristallization processes, one-dimensional case
%J Matematičeskoe modelirovanie
%D 2010
%P 82-102
%V 22
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_12_a6/
%G ru
%F MM_2010_22_12_a6
Yuri Rykov; Nikolai Zaitsev. Numerical analysis of new model of metals cristallization processes, one-dimensional case. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 82-102. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a6/

[1] E. V. Radkevich, Matematicheskie voprosy neravnovesnykh protsessov, Belaya kniga, v. 4, Izd. Tamara Rozhkovskaya, Novosibirsk, 2007, 285 pp.

[2] N. N. Yakovlev, E. A. Lukashev, E. V. Radkevich, “Problemy rekonstruktsii protsessa napravlennoi kristallizatsii”, DAN RAN, 421:5 (2008), 625–629 | Zbl

[3] E. N. Kablov, Litye lopatki gazoturbinnykh dvigatelei. Splavy. Tekhnologii. Pokrytie, MISIS, M., 2001, 632 pp.

[4] O. Kubashevskii, S. B. Olkokk, Metallurgicheskaya termokhimiya, Metallurgiya, M., 1982, 393 pp.

[5] M. A. Biot, “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[6] J. W. Cahn, J. E. Hilliard, “Free energy of a non-uniform system. III: Nucleation in a two-component incompressible fluid”, J. Chemical Physics, 31 (1959), 688–699 | DOI

[7] D. W. Hoffman, J. W. Cahn, “A vector thermodynamics for anisotropic surfaces. I: Fundamentals and applications to plane surface junctions”, Surface Sciences, 31 (1972), 368–388 | DOI

[8] V. P. Skripov, A. V. Skripov, “Spinodalnyi raspad (fazovyi perekhod s uchastiem neustoichivykh sostoyanii)”, UFN, 128:2 (1979), 193–231

[9] N. A. Zaitsev, Yu. G. Rykov, Chislennyi raschet odnoi modeli, opisyvayuschei kristallizatsiyu metallov. I: Odnomernyi sluchai, preprint No 72, IPM im. M. V. Keldysha, 2007, 16 pp.

[10] U. Vaingard, Vvedenie v fiziku kristallizatsii metallov, Mir, M., 1967, 159 pp.

[11] E. V. Radkevich, “On structures in instability zones”, J. Math. Sciences, 165:1 (2010), 127–157 | DOI