Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_12_a5, author = {I. B. Krasnyuk and R. M. Taranets and V. M. Yurchenko}, title = {Pulse structures lamellar type in the bounded polymeric systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--81}, publisher = {mathdoc}, volume = {22}, number = {12}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a5/} }
TY - JOUR AU - I. B. Krasnyuk AU - R. M. Taranets AU - V. M. Yurchenko TI - Pulse structures lamellar type in the bounded polymeric systems JO - Matematičeskoe modelirovanie PY - 2010 SP - 65 EP - 81 VL - 22 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_12_a5/ LA - ru ID - MM_2010_22_12_a5 ER -
I. B. Krasnyuk; R. M. Taranets; V. M. Yurchenko. Pulse structures lamellar type in the bounded polymeric systems. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 65-81. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a5/
[1] To T., Wang H., Djurisic A. B. et al., “Solvent dependence of the evolution of the surface morphology of thin asymmetric diblock copolymer films”, Thin Solid Films, 467 (2004), 59–65 | DOI
[2] Galenko P., “Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system”, Physics Letters A, 287 (2001), 190–197 | DOI
[3] Lecoq N., Zapolsky H., Galenko P., “Evolution of the structure factor in a hyperbolic model of spinodal decomposition”, Eur. Phys. J., 177 (2009), 165–175
[4] Brandenburg A., Käpylä P. J., Mohammed A., “Non-Fickian diffusion and tau approximation from numerical turbulence”, Physics Fluids, 16:4 (2004), 1020–1027 | DOI
[5] Beloshenko V. A., Varyukhin V. N., Effekt pamyati formy v polimerakh i ego primenenie, Naukova dumka, Kiev, 2005, 167 pp.
[6] Cahn J. W., Hilliard J. E., “Free energy of a nonuniform system. I: Interfacial free energy”, The Journal of Chemical Physics, 28:2 (1958), 258–267 | DOI
[7] Cahn J. W., “On spinodal decomposition”, Acta Metallurgica, 9 (1965), 795–801 | DOI
[8] P. de Zhen, Idei skeilinga v fizike polimerov, per. s angl. akad. I. M. Lifshitsa, Mir, M., 1982, 368 pp.
[9] Kuznetsov S. P., “O vozdeistvii periodicheskogo vneshnego vozmuscheniya na sistemu, demonstriruyuschuyu perekhod poryadok-khaos cherez bifurkatsii udvoeniya perioda”, Pisma ZhETF, 39:3 (1984), 113–116
[10] Ivankov N. Yu., “Svoistva skeilinga prostranstva parametrov logisticheskogo otobrazheniya pod vneshnim periodicheskim vozdeistviem”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 5:2–3 (1997), 118–127
[11] Puri S., Binder K., “Surface effects on kinetics of ordering”, Z. Phys. B Condensed Matter, 86 (1992), 263–271 | DOI
[12] Puri S., Binder K., “Surface-Directed Spinodal Decomposition in a Thin Film Geometry: A Computer Simulation”, J. Stat. Phys., 77:1–2 (1994), 145–156 | DOI
[13] Muller M., Binder K., Albano E. V., Finite size effects on the phase diagram of a binary mixture confined between competing walls, 2000, arXiv: cond-mat/0005060v1[cond-mat.stat-mech]
[14] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986, 260 pp. | MR
[15] Sharkovskii A. N., “Sosuschestvovanie tsiklov nepreryvnogo otobrazheniya pryamoi na sebya”, Ukr. mat. zhurn., 16:1 (1964), 61–71
[16] Zaslavskii G. M., Sagdeev R. Z., Usikov D. A., Chernikov A. A., Slabyi khaos i kvaziregulyarnye struktury, Nauka, Moskva, 1991, 236 pp. | MR | Zbl
[17] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Naukova dumka, Kiev, 1986, 300 pp. | MR