Pulse structures lamellar type in the bounded polymeric systems
Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 65-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Polymer-solvent or polymer-polymer systems with fluctuating concentration of one of a component are considered and dynamics of these fluctuations is investigated. It is shown, that the account of non-Fickian diffusion and dynamic nonlinear boundary conditions leads to occurrence of asymptotic periodic pulse travelling-waves.
Keywords: polymeric systems, disorder structures.
Mots-clés : Cahn–Hilliard equation, non-Fickian diffusion
@article{MM_2010_22_12_a5,
     author = {I. B. Krasnyuk and R. M. Taranets and V. M. Yurchenko},
     title = {Pulse structures lamellar type in the bounded polymeric systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--81},
     publisher = {mathdoc},
     volume = {22},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a5/}
}
TY  - JOUR
AU  - I. B. Krasnyuk
AU  - R. M. Taranets
AU  - V. M. Yurchenko
TI  - Pulse structures lamellar type in the bounded polymeric systems
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 65
EP  - 81
VL  - 22
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_12_a5/
LA  - ru
ID  - MM_2010_22_12_a5
ER  - 
%0 Journal Article
%A I. B. Krasnyuk
%A R. M. Taranets
%A V. M. Yurchenko
%T Pulse structures lamellar type in the bounded polymeric systems
%J Matematičeskoe modelirovanie
%D 2010
%P 65-81
%V 22
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_12_a5/
%G ru
%F MM_2010_22_12_a5
I. B. Krasnyuk; R. M. Taranets; V. M. Yurchenko. Pulse structures lamellar type in the bounded polymeric systems. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 65-81. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a5/

[1] To T., Wang H., Djurisic A. B. et al., “Solvent dependence of the evolution of the surface morphology of thin asymmetric diblock copolymer films”, Thin Solid Films, 467 (2004), 59–65 | DOI

[2] Galenko P., “Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system”, Physics Letters A, 287 (2001), 190–197 | DOI

[3] Lecoq N., Zapolsky H., Galenko P., “Evolution of the structure factor in a hyperbolic model of spinodal decomposition”, Eur. Phys. J., 177 (2009), 165–175

[4] Brandenburg A., Käpylä P. J., Mohammed A., “Non-Fickian diffusion and tau approximation from numerical turbulence”, Physics Fluids, 16:4 (2004), 1020–1027 | DOI

[5] Beloshenko V. A., Varyukhin V. N., Effekt pamyati formy v polimerakh i ego primenenie, Naukova dumka, Kiev, 2005, 167 pp.

[6] Cahn J. W., Hilliard J. E., “Free energy of a nonuniform system. I: Interfacial free energy”, The Journal of Chemical Physics, 28:2 (1958), 258–267 | DOI

[7] Cahn J. W., “On spinodal decomposition”, Acta Metallurgica, 9 (1965), 795–801 | DOI

[8] P. de Zhen, Idei skeilinga v fizike polimerov, per. s angl. akad. I. M. Lifshitsa, Mir, M., 1982, 368 pp.

[9] Kuznetsov S. P., “O vozdeistvii periodicheskogo vneshnego vozmuscheniya na sistemu, demonstriruyuschuyu perekhod poryadok-khaos cherez bifurkatsii udvoeniya perioda”, Pisma ZhETF, 39:3 (1984), 113–116

[10] Ivankov N. Yu., “Svoistva skeilinga prostranstva parametrov logisticheskogo otobrazheniya pod vneshnim periodicheskim vozdeistviem”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 5:2–3 (1997), 118–127

[11] Puri S., Binder K., “Surface effects on kinetics of ordering”, Z. Phys. B Condensed Matter, 86 (1992), 263–271 | DOI

[12] Puri S., Binder K., “Surface-Directed Spinodal Decomposition in a Thin Film Geometry: A Computer Simulation”, J. Stat. Phys., 77:1–2 (1994), 145–156 | DOI

[13] Muller M., Binder K., Albano E. V., Finite size effects on the phase diagram of a binary mixture confined between competing walls, 2000, arXiv: cond-mat/0005060v1[cond-mat.stat-mech]

[14] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986, 260 pp. | MR

[15] Sharkovskii A. N., “Sosuschestvovanie tsiklov nepreryvnogo otobrazheniya pryamoi na sebya”, Ukr. mat. zhurn., 16:1 (1964), 61–71

[16] Zaslavskii G. M., Sagdeev R. Z., Usikov D. A., Chernikov A. A., Slabyi khaos i kvaziregulyarnye struktury, Nauka, Moskva, 1991, 236 pp. | MR | Zbl

[17] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Naukova dumka, Kiev, 1986, 300 pp. | MR