Stochastic quasi gas dynamics equations. Viscous gas case
Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results of test calculations for one of a hierarchical set of gas dynamic models, obtained (a scheme in brief is available) from a system of stochastic differential equations, describing gas at moderate and small Knudsen numbers, are presented.
Keywords: Boltzmann equation, gas dynamic equations, stochastic differential equations.
Mots-clés : jump and diffusion random processes
@article{MM_2010_22_12_a4,
     author = {S. V. Bogomolov and L. W. Dorodnitsyn},
     title = {Stochastic quasi gas dynamics equations. {Viscous} gas case},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {22},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a4/}
}
TY  - JOUR
AU  - S. V. Bogomolov
AU  - L. W. Dorodnitsyn
TI  - Stochastic quasi gas dynamics equations. Viscous gas case
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 49
EP  - 64
VL  - 22
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_12_a4/
LA  - ru
ID  - MM_2010_22_12_a4
ER  - 
%0 Journal Article
%A S. V. Bogomolov
%A L. W. Dorodnitsyn
%T Stochastic quasi gas dynamics equations. Viscous gas case
%J Matematičeskoe modelirovanie
%D 2010
%P 49-64
%V 22
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_12_a4/
%G ru
%F MM_2010_22_12_a4
S. V. Bogomolov; L. W. Dorodnitsyn. Stochastic quasi gas dynamics equations. Viscous gas case. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 49-64. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a4/

[1] A. V. Skorokhod, Stokhasticheskie uravneniya dlya slozhnykh sistem, Nauka, M., 1983 | MR

[2] A. A. Arsenev, Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992 | MR

[3] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[4] C. Cercignani, Rarefied Gas Dynamics, Cambridge University Press, 2000 | MR | Zbl

[5] B. N. Chetverushkin, Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[6] Yu. L. Klimontovich, “O neobkhodimosti i vozmozhnosti edinogo opisaniya kineticheskikh i gidrodinamicheskikh protsessov”, Teor. i matem. fizika, 92:2 (1992), 312 | MR | Zbl

[7] G. Repke, Neravnovesnaya statisticheskaya mekhanika, Mir, M., 1990 | MR

[8] K. A. Oelschlager, “Martingale approach to the law of large number for weakly interacting stochastic processes”, The Annals of Probability, 12:2 (1984), 458 | DOI | MR

[9] V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, S. A. Zabelok, “Unified Solver for Rarefied and Continuum Flows with Adaptive Mesh and Algorithm Refinement”, Journal of Computational Physics, 223 (2007), 589 | DOI | Zbl

[10] K. Morinishi, “A Continuum/Kinetic Hybrid Approach for Multi-Scale Flow Simulation”, European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, TU Delft, the Netherlands

[11] P. Degond, M. Lemou, “Turbulence models for incompressible fluids derived from kinetic theory”, J. Math. Fluid Mech., 4:3 (2002), 257 | DOI | MR | Zbl

[12] T. G. Elizarova, Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[13] A. Lukschin, H. Neunzert, J. Struckmeier, Coupling of Navier–Stokes and Boltzmann Regions, HERMES Aerodynamics R/Q Program meeting, VKI, 1992

[14] S. V. Bogomolov, “Stokhasticheskaya model gidrodinamiki”, Matematicheskoe modelirovanie, 2:11 (1990), 85 | MR | Zbl

[15] S. V. Bogomolov, “Uravnenie Fokkera–Planka dlya gaza pri umerennykh chislakh Knudsena”, Matematicheskoe modelirovanie, 15:4 (2003), 16 | MR | Zbl

[16] S. V. Bogomolov, “O modeli Fokkera–Planka dlya integrala stolknovenii Boltsmana pri umerennykh chislakh Knudsena”, Matematicheskoe modelirovanie, 21:1 (2009), 111–117 | MR | Zbl

[17] S. V. Bogomolov, “Ob odnom podkhode k polucheniyu stokhasticheskikh modelei gazodinamiki”, DAN, 423:4 (2008), 458 | MR | Zbl

[18] S. V. Bogomolov, “Uravneniya kvazigazodinamiki”, Matematicheskoe modelirovanie, 21:12 (2009), 145–151 | MR | Zbl

[19] Yu. V. Sheretov, Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2009

[20] I. A. Ivakhnenko, S. V. Polyakov, B. N. Chetverushkin, “Quasihydrodynamic Model and Small-Scale Turbulence”, Mathematical Models and Computer Simulations, 1:1 (2009), 44–50 | DOI | Zbl

[21] H. Brenner, “Fluid mechanics revisited”, Physica A, 370 (2006), 190–224 | DOI | MR

[22] H. Brenner, “Bi-velocity hydrodynamics”, Physica A, 388 (2009), 3391–3398 | DOI

[23] A. Bardow, H. C. Oettinger, “Consequences of the Brenner modification to the Navier–Stokes equations for dynamic light scattering”, Physica A, 373 (2007), 88–96 | DOI

[24] S. K. Dadzie, J. M. Reese, C. R. McInnes, “A continuum model of gas flows with localized density variations”, Physica A, 387 (2008), 6079–6094 | DOI | MR

[25] B. Oksendal, Stokhasticheskie differentsialnye uravneniya, Mir, M., 2003

[26] G. Berd, Molekulyarnaya gazovaya dinamika, Mir, M., 1981

[27] U. Ghia, K. N. Ghia, C. T. Shin, “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method”, J. Comput. Physics, 48:3 (1982), 387–411 | DOI | Zbl

[28] L. V. Dorodnitsyn, B. N. Chetverushkin, “Ob odnoi neyavnoi skheme dlya modelirovaniya dozvukovogo techeniya gaza”, Matem. modelirovanie, 9:5 (1997), 108–118 | MR | Zbl

[29] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[30] L. V. Dorodnitsyn, “Neotrazhayuschie granichnye usloviya dlya gazodinamicheskikh zadach v nelineinoi postanovke”, Prikladnaya matematika i informatika, 11, MAKS Press, M., 2002, 38–74