About the new choice of adaptive artificial viscosity
Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In work the method of adaptive artificial viscosity (AAV) [1, 2] in the appendix to problems of gas dynamics in cylindrical, spherical and Cartesian coordinates is considered. The new way of a choice of the artificial viscosity, leading weak (on three intervals) is offered smoothing of shock waves and accurate suppression oscillation of the decisions. Results of test calculations are resulted.
Keywords: difference schemes, adaptive artificial viscosity, systems of gas dynamics.
@article{MM_2010_22_12_a2,
     author = {I. V. Popov and I. V. Fryazinov},
     title = {About the new choice of adaptive artificial viscosity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {22},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a2/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - I. V. Fryazinov
TI  - About the new choice of adaptive artificial viscosity
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 23
EP  - 32
VL  - 22
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_12_a2/
LA  - ru
ID  - MM_2010_22_12_a2
ER  - 
%0 Journal Article
%A I. V. Popov
%A I. V. Fryazinov
%T About the new choice of adaptive artificial viscosity
%J Matematičeskoe modelirovanie
%D 2010
%P 23-32
%V 22
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_12_a2/
%G ru
%F MM_2010_22_12_a2
I. V. Popov; I. V. Fryazinov. About the new choice of adaptive artificial viscosity. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 23-32. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a2/

[1] Popov I. V., Fryazinov I. V., “Setochnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem iskusstvennoi vyazkosti”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy sedmogo Vserossiiskogo seminara (21–24 sentyabrya 2007, g. Kazan, Rossiya), Izd-vo Kazanskogo gos. universiteta, Kazan, 2007, 223–230

[2] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 20:8 (2008), 48–60 | MR | Zbl

[3] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matematicheskoe modelirovanie, 22:1 (2010), 32–45 | MR | Zbl

[4] Popov I. V., Fryazinov I. V., “Raschety dvumernykh testovykh zadach metodom adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 22:5 (2010), 57–66 | Zbl

[5] Toro E. F., Riemann solvers and numerical methods for fluid dynamics, A practical introduction, Springer, 1999 | MR

[6] Liska Richard, Wendroff Burton, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comp., 25:3 (2003), 995–1017 http://www.math.ntnu.no/conservation | DOI | MR | Zbl