Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_12_a2, author = {I. V. Popov and I. V. Fryazinov}, title = {About the new choice of adaptive artificial viscosity}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {23--32}, publisher = {mathdoc}, volume = {22}, number = {12}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a2/} }
I. V. Popov; I. V. Fryazinov. About the new choice of adaptive artificial viscosity. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 23-32. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a2/
[1] Popov I. V., Fryazinov I. V., “Setochnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem iskusstvennoi vyazkosti”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy sedmogo Vserossiiskogo seminara (21–24 sentyabrya 2007, g. Kazan, Rossiya), Izd-vo Kazanskogo gos. universiteta, Kazan, 2007, 223–230
[2] Popov I. V., Fryazinov I. V., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 20:8 (2008), 48–60 | MR | Zbl
[3] Popov I. V., Fryazinov I. V., “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Matematicheskoe modelirovanie, 22:1 (2010), 32–45 | MR | Zbl
[4] Popov I. V., Fryazinov I. V., “Raschety dvumernykh testovykh zadach metodom adaptivnoi iskusstvennoi vyazkosti”, Matematicheskoe modelirovanie, 22:5 (2010), 57–66 | Zbl
[5] Toro E. F., Riemann solvers and numerical methods for fluid dynamics, A practical introduction, Springer, 1999 | MR
[6] Liska Richard, Wendroff Burton, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comp., 25:3 (2003), 995–1017 http://www.math.ntnu.no/conservation | DOI | MR | Zbl