Computation of dynamic processes in continuous media with a~crack initiated by the near-surface disturbance using grid-characteristic method
Matematičeskoe modelirovanie, Tome 22 (2010) no. 11, pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this article is to study the problem of the near-surface disturbance in a massive rock containing various heterogeneities – empty or fluid-filled cracks. Numerical solutions of problems of wave propagation in such a considerably heterogeneous media taking into account the plasticity of the material obtained. A review of all wave patterns, elastic and elastoplastic, presented. The problem of waves identification using seismograms obtained in the near-surface receiver investigated. Grid-characteristic method for triangle meshes with formulation of boundary conditions on an interface between rock and crack, and also on free surfaces in an explicit form is used in this article. The offered numerical method has a great generality and is suitable for research of processes of interaction of seismic waves with heterogeneous inclusions, because it allows the most correct construction of computational algorithms for the boundaries of integration region and media.
Keywords: computational methods, computer technology, mathematical modeling, parallel computing, high-performance computing technology, continuum mechanics, dynamics.
@article{MM_2010_22_11_a8,
     author = {I. E. Kvasov and S. A. Pankratov and I. B. Petrov},
     title = {Computation of dynamic processes in continuous media with a~crack initiated by the near-surface disturbance using grid-characteristic method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {22},
     number = {11},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_11_a8/}
}
TY  - JOUR
AU  - I. E. Kvasov
AU  - S. A. Pankratov
AU  - I. B. Petrov
TI  - Computation of dynamic processes in continuous media with a~crack initiated by the near-surface disturbance using grid-characteristic method
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 109
EP  - 122
VL  - 22
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_11_a8/
LA  - ru
ID  - MM_2010_22_11_a8
ER  - 
%0 Journal Article
%A I. E. Kvasov
%A S. A. Pankratov
%A I. B. Petrov
%T Computation of dynamic processes in continuous media with a~crack initiated by the near-surface disturbance using grid-characteristic method
%J Matematičeskoe modelirovanie
%D 2010
%P 109-122
%V 22
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_11_a8/
%G ru
%F MM_2010_22_11_a8
I. E. Kvasov; S. A. Pankratov; I. B. Petrov. Computation of dynamic processes in continuous media with a~crack initiated by the near-surface disturbance using grid-characteristic method. Matematičeskoe modelirovanie, Tome 22 (2010) no. 11, pp. 109-122. http://geodesic.mathdoc.fr/item/MM_2010_22_11_a8/

[1] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988, 288 pp. | MR | Zbl

[2] Biot M. A., “Mechanics of deformation and acoustic propagation in porous media”, J. Apple Physics, 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[3] Hsu C. J., Schoenberg M., “Elastic waves through a simulated fractured medium”, Geophysics, 58:7 (1993), 964–977 | DOI

[4] Molotkov L. A., Bakulin A. V., “Effektivnaya model sloistoi uprugo-poristoi sredy”, DAN, 372:1 (2000), 108–112

[5] Kozlov E. A., “Pressure-dependent seismic response of fractured rock”, Geophysics, 69:4 (2004), 885–897

[6] Thomsen L., “Weak elastic anisotropy”, Geophysics, 51 (1986), 1954–1966 | DOI

[7] Hudson J. A., “Wave speeds and attention of elastic waves in matirials containing cracs”, Geophysical Journal of the Royal Astronomical Society, 64 (1981), 133–150 | Zbl

[8] Kondaurov V. I., Fortov V. E., Osnovy termomekhaniki kondensirovannoi sredy, MFTI, M., 2002, 336 pp.

[9] Novatskii V. K., Teoriya uprugosti, Mir, M., 1975, 872 pp. | MR

[10] Kozlov E. A., Modeli sredy v razvedochnoi seismologii, GERS, M., 2006, 480 pp.

[11] Novatskii V. K., Volnovye zadachi teorii plastichnosti, Mir, M., 1978, 307 pp.

[12] Ivanov V. D., Kondaurov V. N., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:11 (1990), 10–29 | MR | Zbl

[13] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739 | MR | Zbl

[14] Petrov I. B., Kholodov A. S., “O regulyarizatsii razryvnykh chislennykh reshenii uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 24:8 (1984), 1172–1188 | MR | Zbl

[15] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR

[16] Petrov I. B., Chelnokov F. B., “Chislennoe issledovanie volnovykh protsessov i protsessov razrusheniya v mnogosloinykh pregradakh”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1562–1579 | MR | Zbl

[17] Agapov P. I., Belotserkovskii O. M., Petrov I. B., “Chislennoe modelirovanie posledstvii mekhanicheskogo vozdeistviya na mozg cheloveka pri cherepno-mozgovoi travme”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1711–1720 | MR

[18] Levyant V. B., Petrov I. B., Chelnokov F. B., “Klasternaya priroda seismicheskoi energii, rasseyannoi ot zony diffuznoi kaverznosti i treschinovatosti v massivnykh porodakh”, Geofizika, 2005, no. 6, 5–19