Feinman path integral computer simulation of helium atom electron shell
Matematičeskoe modelirovanie, Tome 22 (2010) no. 11, pp. 79-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ab inition calculations of electron-electron and electron-nucleus space correlation functions in the ground state of helium atom with explicit account for the exchange and spin variables are carried out using Feinman Path Integral Monte Carlo method. Mechanical properties of the electron shell are obtained in terms of the volume-pressure dependence. The dependencies of energy on as well as its components are calculated in the conditions of a strong shock compression. In thermally excited states, the phenomenon of spin “pairing” accompanying the cooling and compression of the system is studied. The spin squared operator equilibrium numbers dependencies are calculated. It is demonstrated that, even in the low temperature regime, Path Integral Monte Carlo method in the field of Coulomb singularity preserves its effectiveness, and fluctuation uncertainties of the basic energy estimator are reducing when cooling the system. The convergence of discretized presentation of Feinman integral at low temperatures is provided due to natural reduction of the lengths of links of the path drawn into the field of the nucleus.
Keywords: path integrals, quantum statistics, computer simulation, Monte Carlo method, exchange symmetry, spin.
Mots-clés : electrons
@article{MM_2010_22_11_a6,
     author = {S. V. Shevkunov},
     title = {Feinman path integral computer simulation of helium atom electron shell},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {22},
     number = {11},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_11_a6/}
}
TY  - JOUR
AU  - S. V. Shevkunov
TI  - Feinman path integral computer simulation of helium atom electron shell
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 79
EP  - 96
VL  - 22
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_11_a6/
LA  - ru
ID  - MM_2010_22_11_a6
ER  - 
%0 Journal Article
%A S. V. Shevkunov
%T Feinman path integral computer simulation of helium atom electron shell
%J Matematičeskoe modelirovanie
%D 2010
%P 79-96
%V 22
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_11_a6/
%G ru
%F MM_2010_22_11_a6
S. V. Shevkunov. Feinman path integral computer simulation of helium atom electron shell. Matematičeskoe modelirovanie, Tome 22 (2010) no. 11, pp. 79-96. http://geodesic.mathdoc.fr/item/MM_2010_22_11_a6/

[1] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E., “Equation of state calculation by fast computing machines”, J. Chem. Phys., 21:6 (1953), 1087–1092 | DOI

[2] Feynman R. P., Hibbs A. R., Quantum mechanics and path integrals, McGraw Hill, New York, 1965, 330 pp. ; Feinman R. P., Khibbs A. R., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968, 382 pp. | Zbl

[3] Fosdick L. D., Jordan H. F., “Path Integral calculation of the two-particle Slater sum for He”, Phys. Rev., 143:1 (1966), 58–66 | DOI

[4] Jordan H. F., Fosdick L. D., “Three-particle effects in the pair distribution function for He”, Phys. Rev., 171:1 (1968), 128–149 | DOI

[5] Zamalin V. M., Norman G. E., “O metode Monte-Karlo v feinmanovskoi formulirovke kvantovoi statistiki”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 13:2 (1973), 408–420

[6] Filinov V. S., “Uchet vyrozhdeniya elektronov v psevdopotentsialnoi modeli neidealnoi plazmy”, Teplofizika vysokikh temperatur, 11:4 (1973), 871–874

[7] Filinov V. S., “Psevdopotentsialnaya model neidealnoi vyrozhdenni plazmy”, Teplofizika vysokikh temperatur, 13:2 (1975), 251–263 | MR

[8] Filinov V. S., “Primenenie metoda Monte-Karlo k issledovaniyu neidealnykh slabo vyrozhdennykh fermi-sistem”, Teplofizika vysokikh temperatur, 13:6 (1979), 1146–1152

[9] Filinov V. S., “Vliyanie neidealnosti plazmy na vyrozhdenie elektronov”, Teplofizika vysokikh temperatur, 14:2 (1976), 245–253 | MR

[10] Filinov V. S., “Degeneration of electrons in onideal plasma”, Phys. Lett. A, 55:3 (1975), 259–260 | DOI

[11] Shevkunov S. V., “Problema opisaniya obmena i spinovykh sostoyanii v feinmanovskom predstavlenii kvantovoi statistiki”, Doklady Akademii nauk, 369:1 (1999), 43–46 | Zbl

[12] Shevkunov S. V., “Obmennaya simmetriya v sisteme nerelyativistskikh fermionov so spinom $1/2$ v feinmanovskom predstavlenii kvantovoi statistiki”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 118:1(7) (2000), 36–55

[13] Shevkunov S. V., “Obmennaya simmetriya v formalizme integralov po traektoriyam Feinmana dlya mnogoelektronnykh sistem so spinom”, Doklady Akademii nauk, 382:5 (2002), 615–620 | Zbl

[14] Shevkunov S. V., “Spinovoe sostoyanie elektronnoi komponenty plotnoi plazmy v formalizme integralov po traektoriyam”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 43:12 (2003), 1825–1834 | MR | Zbl

[15] Shevkunov S. V., “Modelirovanie plotnoi vodorodnoi plazmy metodom Monte-Karlo – integraly po traektoriyam”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 121:5 (2002), 1098–1123

[16] Shevkunov S. V., “Raschet uravneniya sostoyaniya plotnoi vodorodnoi plazmy metodom integralov po traektoriyam Feinmana”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 127:3 (2005), 696–716

[17] Shevkunov S. V., “Teoriya termicheskoi ionizatsii vodoroda na osnove integralov po traektoriyam Feinmana”, Doklady Akademii nauk, 414:4 (2007), 472–476 | Zbl

[18] Shevkunov S. V., “Modelirovanie metodom integralov po traektoriyam Feinmana termicheskoi ionizatsii v vodorodnoi plazme”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 132:2(8) (2007), 453–477

[19] Shevkunov S. V., “Prostranstvennye korrelyatsii v elektronnom gaze. Kompyuternoe modelirovanie metodom integralov po traektoriyam Feinmana”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 130:1(7) (2006), 105–121

[20] Shevkunov S. V., “Statistiko-mekhanicheskaya teoriya elektronnogo gaza na osnove integralov po traektoriyam Feinmana”, Doklady Akademii nauk, 409:2 (2006), 176–181 | Zbl

[21] Shevkunov S. V., “Stolknovenie dvukh elektronnykh volnovykh paketov v feinmanovskom predstavlenii kvantovoi statistiki”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 133:1 (2008), 25–44 | MR

[22] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986, 319 pp. | MR | Zbl

[23] Shevkunov S. V., “Termicheskaya ustoichivost szhatogo atoma vodoroda pri temperaturakh (1-2)x10000 K. Raschet metodom Monte-Karlo”, Teplofizika vysokikh temperatur, 28:1 (1990), 1–8

[24] Shevkunov S. V., “Obmennaya simmetriya v metode integralov po traektoriyam. Molekula vodoroda”, Sovremennye problemy statisticheskoi fiziki, v. 1, ed. Yukhnovskii I. R., Naukova dumka, Kiev, 1989, 379–385

[25] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974, 752 pp. | MR

[26] Hill T. L., Statistical mechanics. Principles and selected applications, McGraw-Hill, New-York, 1956, 432 pp. ; Khill T., Statisticheskaya mekhanika. Printsipy i izbrannye prilozheniya, IL, M., 1960, 455 pp. | MR | Zbl

[27] Zamalin V. M., Norman G. E., Filinov V. S., Metod Monte-Karlo v statisticheskoi termodinamike, Nauka, M., 1977, 228 pp. | MR

[28] Radtsig A. A., Smirnov B. M., Spravochnik po atomnoi i molekulyarnoi fizike, Atomizdat, M., 1980, 240 pp.

[29] Davydov A. S., Kvantovaya mekhanika, Fiz.-mat. Giz., M., 1963, 471 pp. | MR

[30] Shevkunov S. V., “Paramagnitnaya vospriimchivost elektronnoi pary v termostate. Raschet metodom Monte-Karlo”, Matematicheskoe modelirovanie, 2:7 (1990), 3–19 | Zbl