On some multiscale algorithms for sector modeling in multiphase flow problems
Matematičeskoe modelirovanie, Tome 22 (2010) no. 11, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multiscale algorithm for multiphase filtration problem is proposed. Filtration fluxes on the fine grid are determined from solution of the pressure equation on the coarse grid. Further, domain is decomposed on to subdomains with reasonable number of cells and the full second boundary condition filtration problem is solved using pressure equation. The support operator method has been improved for complex structure cell for solution of the pressure equation on the coarse grid. This method is high resolution one: i.e. it allows revealing solution properties related to fine grid structure.
Keywords: multiphase flows, approximation on the non-ortogonal grids, multiscale algorithms.
@article{MM_2010_22_11_a0,
     author = {A. Kh. Pergament and V. A. Semiletov and P. Yu. Tomin},
     title = {On some multiscale algorithms for sector modeling in multiphase flow problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {22},
     number = {11},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_11_a0/}
}
TY  - JOUR
AU  - A. Kh. Pergament
AU  - V. A. Semiletov
AU  - P. Yu. Tomin
TI  - On some multiscale algorithms for sector modeling in multiphase flow problems
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 3
EP  - 17
VL  - 22
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_11_a0/
LA  - ru
ID  - MM_2010_22_11_a0
ER  - 
%0 Journal Article
%A A. Kh. Pergament
%A V. A. Semiletov
%A P. Yu. Tomin
%T On some multiscale algorithms for sector modeling in multiphase flow problems
%J Matematičeskoe modelirovanie
%D 2010
%P 3-17
%V 22
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_11_a0/
%G ru
%F MM_2010_22_11_a0
A. Kh. Pergament; V. A. Semiletov; P. Yu. Tomin. On some multiscale algorithms for sector modeling in multiphase flow problems. Matematičeskoe modelirovanie, Tome 22 (2010) no. 11, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2010_22_11_a0/

[1] Renard Ph., de Marsily G., “Calculating equivalent permeability: a review”, Advances in Water Resources, 20 (1997), 253–278 | DOI

[2] Louis J. Durlofsky, “Upscaling of geocellular models for reservoir flow semulation: A review of recent progress”, 7th International Forum of Reservoir Simulation Biihl (Baden-Baden, Germany, 2003, June 23–27)

[3] Pergament A. K., Semiletov V. A., Zaslavsky M. Y., “Multiscale Averaging Algorithms for Flow Modeling in Heterogeneous Reservoir”, 10th European Conference of Mathematics in Oil Recovery, ECMOR X (Amsterdam, The Netherlands, 9/4-7/2006), 2006, P014

[4] Effendiev Y., Hou T., Ginting V., “Multiscale finite elements for nonlinear problem and their application”, Computional Mathematic Science, 2:4 (2004), 553–598 | MR

[5] Tomin P. Yu., Mnogomasshtabnye algoritmy na osnove metoda konechnykh superelementov v zadachakh dvukhfaznoi filtratsii, preprint No 45, IPM im. M. V. Keldysha, M., 2007

[6] Ivan Lunati I., Patrick Jenny, “Multi-scale Finite-volume Method for Highly Heterogeneous Porous Media with Shale Layers”, 10th European Conference of Mathematics in Oil Recovery, ECMOR X (Amsterdam, The Netherlands, 9/4-7/2006), 2006, B006

[7] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, § 31. Metod konechnykh elementov, M., 1994

[8] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A., Tishkin V. F., Favorskii A. P., Raznostnye skhemy na neregulyarnykh setkakh, Minsk, 1996

[9] Pergament A. Kh., Semiletov V. A., “Metod opornykh operatorov dlya ellipticheskikh i parabolicheskikh kraevykh zadach s razryvnymi koeffitsientami”, Matematicheskoe modelirovanie, 19:5 (2007), 105–116 | MR | Zbl

[10] Zaslavskii M. Yu., Pergament A. Kh., “Algoritmy osredneniya i metod opornykh operatorov v ellipticheskikh zadachakh s razryvnymi koeffitsientami”, ZhVM i MF, 45:9 (2005), 1616–1627 | MR | Zbl

[11] Myasnikov V. P., Zaslavskii M. Yu., Pergament A. Kh., “Algoritmy osredneniya dlya resheniya zadach teorii uprugosti na pryamougolnykh setkakh, ne adaptirovannykh k strukture sredy (averaging)”, DAN, 394:3 (2004), 332–337 | MR

[12] Pergament A. K., Tomin P. Y., Semiletov V. A., “Mathematical Modeling of Multiphase Flow in Fracture Media”, 11th European Conference on the Mathematics of Oil Recovery, ECMOR XI (Bergen, Norway, 08 September, 2008)

[13] Pergament A. K., Semiletov V. A., Tomin P. Y., “Multiscale Asynchronous Algorithms Based on the Superelements Method for Multiphase Flow”, 11th European Conference on the Mathematics of Oil Recovery, ECMOR XI (Bergen, Norway, 08 September, 2008)

[14] Babuska I., Caloz G., Osborn J. E., “Special finite element methods for a class of second problems with rough coefficients”, SIAM Journal Numerical Analysis, 31:4 (1994), 945–981 | DOI | MR | Zbl

[15] Bernstein S. N., “Conditions necessaires et suffisantes pour la possibilite du probleme de Dirichlet”, Comptes Rendus (Paris), 150 (1910), 514–515 | Zbl

[16] Marchenko N. A., Pergament A. Kh., Popov S. B., Semiletov V. A., Tomin P. Yu., Ierarkhiya yavno-neyavnykh raznostnykh skhem dlya resheniya zadach mnogofaznoi filtratsii, preprint No 97, IPM im. M. V. Keldysha, M., 2008