On explicit methods for the time integration of parabolic equations
Matematičeskoe modelirovanie, Tome 22 (2010) no. 10, pp. 127-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some principles for construction of the time integration schemes for parabolic equations. It is presented an approach based on explicit iterations with Chebyshev parameters and resulting in the schemes of the first and second order of accuracy. This paper gives systematization of knowledge of these schemes, conditions of their applicability, included applications for computations of high temperature processes in thermonuclear targets.
Keywords: difference schemes, Chebyshev parameters.
Mots-clés : parabolic equations
@article{MM_2010_22_10_a9,
     author = {V. T. Zhukov},
     title = {On explicit methods for the time integration of parabolic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {127--158},
     publisher = {mathdoc},
     volume = {22},
     number = {10},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_10_a9/}
}
TY  - JOUR
AU  - V. T. Zhukov
TI  - On explicit methods for the time integration of parabolic equations
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 127
EP  - 158
VL  - 22
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_10_a9/
LA  - ru
ID  - MM_2010_22_10_a9
ER  - 
%0 Journal Article
%A V. T. Zhukov
%T On explicit methods for the time integration of parabolic equations
%J Matematičeskoe modelirovanie
%D 2010
%P 127-158
%V 22
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_10_a9/
%G ru
%F MM_2010_22_10_a9
V. T. Zhukov. On explicit methods for the time integration of parabolic equations. Matematičeskoe modelirovanie, Tome 22 (2010) no. 10, pp. 127-158. http://geodesic.mathdoc.fr/item/MM_2010_22_10_a9/

[1] Alalykin G. B., Zhukov V. T., Zabrodin A. V. i dr., Metodika chislennogo modelirovaniya dvumernykh nestatsionarnykh techenii teploprovodnogo gaza v trekhtemperaturnom priblizhenii v oblastyakh slozhnoi formy s podvizhnymi granitsami (N3T), otchet NIR 8-1-04, IPM im. M. V. Keldysha, M., 2004, 244 pp.

[2] Sharkov B. Yu. (red.), Yadernyi sintez s inertsionnym uderzhaniem. Sovremennoe sostoyanie i perspektivy dlya energetiki, Fizmatlit, M., 2005, 264 pp.

[3] Godunov S. K. (red.), Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR | Zbl

[4] Lokutsievskii V. O., Lokutsievskii O. V., Primenenie chebyshevskikh parametrov dlya chislennogo resheniya nekotorykh evolyutsionnykh zadach, preprint No 99, IPM im. M. V. Keldysha, M., 1984, 30 pp.

[5] Lokutsievskii V. O., Lokutsievskii O. V., “O chislennom reshenii kraevykh zadach dlya uravnenii parabolicheskogo tipa”, Dokl. AN SSSR, 291:3 (1986), 540–544 | MR

[6] Zhukov V. T., Chislennye eksperimenty po resheniyu uravneniya teploprovodnosti metodom lokalnykh iteratsii, preprint No 97, IPM im. M. V. Keldysha, M., 1984, 22 pp. | MR

[7] Zhukov V. T., Raznostnye skhemy lokalnykh iteratsii dlya parabolicheskikh uravnenii, preprint No 73, IPM im. M. V. Keldysha, M., 1986, 31 pp. | MR

[8] Zhukov V. T., “Yavno-iteratsionnye skhemy dlya parabolicheskikh uravnenii”, Voprosy atomnoi nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 1993, no. 4, 40–46

[9] Shvedov A. S., Zhukov V. T., “Explicit iterative difference schemes for parabolic equations”, Russian J. Numer. Anal. Math. Modelling, 13:2 (1998), 133–148 (English) | DOI | MR | Zbl

[10] Lyusternik L. A., “O raznostnykh approksimatsiyakh operatora Laplasa”, Uspekhi matem. nauk, 9:2(60) (1954), 3–66 | MR | Zbl

[11] Yuan Chzhao-din, Nekotorye raznostnye skhemy resheniya pervoi kraevoi zadachi dlya lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi, Diss. na soisk. uche-noi stepeni kand. fiz.-mat. nauk, MGU, M., 1958

[12] Yuan Chzhao-din, “Nekotorye raznostnye skhemy chislennogo resheniya differentsialnogo uravneniya parabolicheskogo tipa”, Matem. sbornik, 50(92):4 (1960), 391–422 | MR | Zbl

[13] Saulev V. K., Integrirovanie uravnenii parabolicheskogo tipa metodom setok, ed. Lyusternik L. A., Fizmatgiz, M., 1960, 324 pp. | MR

[14] Gelfand I. M., Lokutsievskii O. V., “O raznostnykh skhemakh dlya resheniya uravneniya teploprovodnosti”, Vvedenie v teoriyu raznostnykh skhem, eds. Godunov S. K., Ryabenkii B. C., Fizmatgiz, M., 1962, 340

[15] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychislitelnye protsessy i sistemy, 8, ed. G. I. Marchuk, Nauka, M., 1991

[16] Verwer J. G., “A class of stabilized three-step Runge–Kutta methods for the numerical integration of parabolic equations”, J. Comp. Appl. Math., 3 (1977), 155–166 | DOI | MR | Zbl

[17] Verwer J. G., “An implementation of a class of stabilized explicit methods for the time integration of parabolic equations”, ACM Trans. Math. Software, 6 (1980), 188–205 | DOI | Zbl

[18] Verwer J. G., Sommeijer B. P., Hundsdorfe L. F., “RKC time-stepping for advection-diffusion-reaction problems”, J. of Computational Physics, 201:1 (2004), 61–79 | DOI | MR | Zbl

[19] Shtetter X., Analiz metodov diskretizatsii dlya obyknovennykh differentsialnykh uravnenii, Mir, M., 1978, 463 pp. | MR

[20] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 686 pp.

[21] Shvedov A. S., “Trivialnost odnoi raznostnoi skhemy s peremennymi shagami po vremeni dlya uravneniya teploprovodnosti”, ZhVM i MF, 37:1 (1997), 69–73 | MR | Zbl

[22] Kalitkin N. N., Ritus I. V., Kompleksnaya skhema resheniya parabolicheskikh uravnenii, preprint No 32, IPM im. M. V. Keldysha, M., 1981

[23] Dorodnitsyn L. V., “Approksimatsii kvazigazodinamicheskoi sistemy uravnenii, privodyaschie k yavnym algoritmam”, Matem. modelirovanie, 18:4 (2006), 77–88 | MR | Zbl

[24] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[25] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR

[26] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, Izdatelstvo MFTI, M., 1994, 528 pp.

[27] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, UMN, 28:2(170) (1973), 121–182 | MR | Zbl

[28] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp. | MR

[29] Zhukov V. T., Zabrodin A. V., Feodoritova O. B., “Osobennosti chislennogo modelirovaniya misheni iteratsionnogo termoyadernogo sinteza v priblizhenii teploprovodnoi gazovoi dinamiki”, ZhVM i MF, 34:12 (1994), 1852–1866 | MR | Zbl

[30] Richardson L. F., “The approximate solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam”, Roy. Soc. Philos. Trans. A, 210 (1910), 307–357 | DOI | Zbl

[31] Gavurin M. K., “Primenenie polinomov nailuchshego priblizheniya k uluchsheniyu skhodimosti iterativnykh protsessov”, UMN, 5:3(37) (1950), 156–160 | MR | Zbl

[32] Flanders D., Shortley G., “Numerical determination of fundamental modes”, J. Appl. Phys., 21:12 (1950), 1326–1332 | DOI | MR | Zbl

[33] Chebyshev P. L., Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii, Sochineniya, v. 1, SPb., 1899

[34] Lebedev V. I., Finogenov S. A., “O poryadke vybora iteratsionnykh parametrov v chebyshevskom tsiklicheskom metode”, ZhVM i MF, 11:2 (1971), 425–438 | MR | Zbl

[35] Babenko K. I., Osnovy chislennogo analiza, NITs RKhD, Moskva–Izhevsk, 2002, 848 pp.

[36] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949, 688 pp. | MR

[37] Godunov S. K., Ryabenkii B. C., Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1973, 400 pp. | Zbl

[38] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[39] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979, 392 pp. | MR | Zbl

[40] Zabrodin A. V., Pekarchuk S. B., “Ob odnom metode chislennogo resheniya nelineinogo uravneniya teploprovodnosti na parallelogrammnoi setke tochek”, Voprosy atomnoi nauki i tekhniki. Ser. Metodiki i programmy chislennogo resheniya zadach matem. fiziki, 1982, no. 2(10), 14–22