Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_10_a3, author = {L. A. Krukier and O. A. Pichugina and T. S. Martynova}, title = {Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {56--68}, publisher = {mathdoc}, volume = {22}, number = {10}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_10_a3/} }
TY - JOUR AU - L. A. Krukier AU - O. A. Pichugina AU - T. S. Martynova TI - Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems JO - Matematičeskoe modelirovanie PY - 2010 SP - 56 EP - 68 VL - 22 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_10_a3/ LA - ru ID - MM_2010_22_10_a3 ER -
%0 Journal Article %A L. A. Krukier %A O. A. Pichugina %A T. S. Martynova %T Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems %J Matematičeskoe modelirovanie %D 2010 %P 56-68 %V 22 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2010_22_10_a3/ %G ru %F MM_2010_22_10_a3
L. A. Krukier; O. A. Pichugina; T. S. Martynova. Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems. Matematičeskoe modelirovanie, Tome 22 (2010) no. 10, pp. 56-68. http://geodesic.mathdoc.fr/item/MM_2010_22_10_a3/
[1] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989, 456 pp. | MR | Zbl
[2] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. VUZov. Mat., 1979, no. 7, 41–52 | MR | Zbl
[3] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 248 pp.
[4] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | Zbl
[5] Taussky O., “Positive-definite matrices and their role in the study of the characteristic roots of general matrices”, Adv. Math., 2 (1968), 175–186 | DOI | MR | Zbl
[6] Krukier L. A., “Reshenie silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii iteratsionnym metodom, osnovannym na kososimmetrichnoi chasti iskhodnoi polozhitelnoi matritsy”, Matematicheskoe modelirovanie, 13:3 (2002), 49–56 | MR | Zbl
[7] Saad Y., Schultz M. H., “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Scientific and Statistical Computing, 1986, 856–869 | MR | Zbl
[8] Tong C. H., Ye Q., Analysis of the finite precision biconjugate gradient algorithm for nonsymmetric linear systems, Report SCCM 95-11, Computer Science Dept., Stanford University, 1995
[9] Wang L., Bai Z.-Z., “Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts”, BIT Numer. Math., 44 (2004), 363–386 | DOI | MR | Zbl
[10] Saad Y., Iterative methods for Sparse Linear Systems, PWS Publishing Company, 1995, 447 pp.