Numerical simulation of soliton in simple two-dimensional lattice
Matematičeskoe modelirovanie, Tome 21 (2009) no. 9, pp. 27-33
Cet article a éte moissonné depuis la source Math-Net.Ru
The two-dimensional discrete Korteweg-de Vries equation is considered. Integration by time is provided by Runge–Kutta fourth-order method. The one-soliton solutions are found, their individual properties are determinated. Various interactions between plane normal, oblique and localized solitons are studied.
@article{MM_2009_21_9_a2,
author = {S. P. Popov},
title = {Numerical simulation of soliton in simple two-dimensional lattice},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {27--33},
year = {2009},
volume = {21},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2009_21_9_a2/}
}
S. P. Popov. Numerical simulation of soliton in simple two-dimensional lattice. Matematičeskoe modelirovanie, Tome 21 (2009) no. 9, pp. 27-33. http://geodesic.mathdoc.fr/item/MM_2009_21_9_a2/
[1] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony, Nauka, M., 1991, 320 pp. | MR | Zbl
[2] Bibik Yu. V., Popov S. P., “Chislennoe modelirovanie solitonnykh reshenii prosteishikh diskretnykh nelineinykh uravnenii i ikh kontinualnykh analogov”, Matem. modelirovanie, 16:5 (2004), 66–82 | MR
[3] Mikhailov A. V., “Ob integriruemosti dvumernogo obobscheniya tsepochki Toda”, Pisma v ZhETF, 30:7 (1979), 443–448