Numerical simulation of soliton in simple two-dimensional lattice
Matematičeskoe modelirovanie, Tome 21 (2009) no. 9, pp. 27-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-dimensional discrete Korteweg-de Vries equation is considered. Integration by time is provided by Runge–Kutta fourth-order method. The one-soliton solutions are found, their individual properties are determinated. Various interactions between plane normal, oblique and localized solitons are studied.
@article{MM_2009_21_9_a2,
     author = {S. P. Popov},
     title = {Numerical simulation of soliton in simple two-dimensional lattice},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--33},
     publisher = {mathdoc},
     volume = {21},
     number = {9},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_9_a2/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Numerical simulation of soliton in simple two-dimensional lattice
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 27
EP  - 33
VL  - 21
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_9_a2/
LA  - ru
ID  - MM_2009_21_9_a2
ER  - 
%0 Journal Article
%A S. P. Popov
%T Numerical simulation of soliton in simple two-dimensional lattice
%J Matematičeskoe modelirovanie
%D 2009
%P 27-33
%V 21
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_9_a2/
%G ru
%F MM_2009_21_9_a2
S. P. Popov. Numerical simulation of soliton in simple two-dimensional lattice. Matematičeskoe modelirovanie, Tome 21 (2009) no. 9, pp. 27-33. http://geodesic.mathdoc.fr/item/MM_2009_21_9_a2/

[1] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony, Nauka, M., 1991, 320 pp. | MR | Zbl

[2] Bibik Yu. V., Popov S. P., “Chislennoe modelirovanie solitonnykh reshenii prosteishikh diskretnykh nelineinykh uravnenii i ikh kontinualnykh analogov”, Matem. modelirovanie, 16:5 (2004), 66–82 | MR

[3] Mikhailov A. V., “Ob integriruemosti dvumernogo obobscheniya tsepochki Toda”, Pisma v ZhETF, 30:7 (1979), 443–448