1D and 2D bicompact schemes in layered mediums
Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 44-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

New type of differential schemes – so called bicompact schemes was considered. To derive such schemes we transform PDE into system of PDEs. Spatial derivatives are approximated on 2-points stencil, i.e. within single grid step. In layered mediums bicompact schemes keep their approximation if we set a special grid in a way that all points where coefficients have breaks are nodes of the grid. Two schemes for 1-dimensional hyperbolic problem were considered in details and schemes for 2D problems are given.
@article{MM_2009_21_8_a4,
     author = {N. N. Kalitkin and P. V. Koryakin},
     title = {1D and {2D} bicompact schemes in layered mediums},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--62},
     publisher = {mathdoc},
     volume = {21},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_8_a4/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - P. V. Koryakin
TI  - 1D and 2D bicompact schemes in layered mediums
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 44
EP  - 62
VL  - 21
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_8_a4/
LA  - ru
ID  - MM_2009_21_8_a4
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A P. V. Koryakin
%T 1D and 2D bicompact schemes in layered mediums
%J Matematičeskoe modelirovanie
%D 2009
%P 44-62
%V 21
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_8_a4/
%G ru
%F MM_2009_21_8_a4
N. N. Kalitkin; P. V. Koryakin. 1D and 2D bicompact schemes in layered mediums. Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 44-62. http://geodesic.mathdoc.fr/item/MM_2009_21_8_a4/

[1] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR | Zbl

[2] Kalitkin N. N., Koryakin P. V., “Bikompaktnye skhemy i sloistye sredy”, DAN, 419:6 (2008), 744–748 | MR

[3] Rogov B. V., Mikhailovskaya M. N., “O skhodimosti kompaktnykh raznostnykh skhem”, Matematicheskoe modelirovanie, 20:1 (2008), 99–116 | MR | Zbl

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[5] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[6] Kalitkin N. N., Kuznetsov N. O., Panchenko S. L., “Metod kvaziravnomernykh setok v beskonechnoi oblasti”, DAN, 374:5 (2000), 598–601 | MR | Zbl

[7] Alshina E. A., Kalitkin N. N., “Vychislenie spektrov lineinykh differentsialnykh operatorov”, DAN, 380:4 (2001), 443–447 | MR