Elementary differentals, their graphs and codes
Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 37-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many tens or hundreds of elementary differentials must be taken into account in constructing one-step numerical methods for solving ODE (like Runge–Kutta methods, Rosenbrock methods, ABC-schemes) of high order accuracy. Their graphical representation in use nowadays does not allow to computerize the huge amount of manual labor. We propose a simple and intuitive way for digital encoding of them and algorithms for generation, analysis and synthesis of these codes. These algorithms are implemented in a computer program that computes tables of codes for elementary differentials up to arbitrary order, together with their multiplicities and gamma-factors.
@article{MM_2009_21_8_a3,
     author = {A. V. Tygliyan and S. S. Filippov},
     title = {Elementary differentals, their graphs and codes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {21},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_8_a3/}
}
TY  - JOUR
AU  - A. V. Tygliyan
AU  - S. S. Filippov
TI  - Elementary differentals, their graphs and codes
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 37
EP  - 43
VL  - 21
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_8_a3/
LA  - ru
ID  - MM_2009_21_8_a3
ER  - 
%0 Journal Article
%A A. V. Tygliyan
%A S. S. Filippov
%T Elementary differentals, their graphs and codes
%J Matematičeskoe modelirovanie
%D 2009
%P 37-43
%V 21
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_8_a3/
%G ru
%F MM_2009_21_8_a3
A. V. Tygliyan; S. S. Filippov. Elementary differentals, their graphs and codes. Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 37-43. http://geodesic.mathdoc.fr/item/MM_2009_21_8_a3/

[1] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[2] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[3] S. S. Filippov, “ABC-skhemy dlya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Doklady RAN, 399:2 (2004), 170–172 | MR