Gas flow past two spheres located in volume with punched walls
Matematičeskoe modelirovanie, Tome 21 (2009) no. 7, pp. 67-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multiply-connected domain (volume with holes in which two spheres are located) is considered. The types of the subdomains (final volumes) are presented on which the initial domain can be divided. For each type of the final volumes the curvilinear coordinate system is introduced. On the basis of the given division the numerical method of calculation of viscous gas flow in the multiply-connected domain is considered. The results of calculations are presented at $\mathrm{Re}=100$, $\mathrm{Re}=500$, $\mathrm M=0.6$.
@article{MM_2009_21_7_a5,
     author = {A. M. Lipanov and A. N. Semakin},
     title = {Gas flow past two spheres located in volume with punched walls},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--74},
     publisher = {mathdoc},
     volume = {21},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_7_a5/}
}
TY  - JOUR
AU  - A. M. Lipanov
AU  - A. N. Semakin
TI  - Gas flow past two spheres located in volume with punched walls
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 67
EP  - 74
VL  - 21
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_7_a5/
LA  - ru
ID  - MM_2009_21_7_a5
ER  - 
%0 Journal Article
%A A. M. Lipanov
%A A. N. Semakin
%T Gas flow past two spheres located in volume with punched walls
%J Matematičeskoe modelirovanie
%D 2009
%P 67-74
%V 21
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_7_a5/
%G ru
%F MM_2009_21_7_a5
A. M. Lipanov; A. N. Semakin. Gas flow past two spheres located in volume with punched walls. Matematičeskoe modelirovanie, Tome 21 (2009) no. 7, pp. 67-74. http://geodesic.mathdoc.fr/item/MM_2009_21_7_a5/

[1] Basniev K. S., Dmitriev N. M., Rozenberg G. D., Neftegazovaya gidromekhanika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 544 pp.

[2] Lipanov A. M., “Metod chislennogo resheniya uravnenii gidromekhaniki v mnogosvyaznykh oblastyakh”, Matematicheskoe modelirovanie, 18:12 (2006), 3–18 | MR | Zbl

[3] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987, 840 pp. | MR

[4] Beklemishev D. V., Kurs analiticheskoi geometrii i lineinoi algebry, Fiziko-matematicheskaya literatura, M., 2000, 376 pp. | Zbl

[5] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Izdatelstvo “Lan”, SPb., 2002, 688 pp. | MR

[6] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966, 260 pp. | Zbl

[7] Sedov L. I., Mekhanika sploshnoi sredy, V 2 t., T. 1, Izdatelstvo “Lan”, SPb., 2004, 528 pp.

[8] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 2004, 248 pp.

[9] Fedorchenko A. T., “Chislennoe issledovanie nestatsionarnykh dozvukovykh techenii vyazkogo gaza vo vnezapno rasshiryayuschemsya ploskom kanale”, Mekhanika zhidkosti i gaza, 1988, no. 4, 32–41

[10] Verzhbitskii V. M., Osnovy chislennykh metodov, Vysshaya shkola, M., 2002, 840 pp.

[11] Lipanov A. M., Kisarov Yu. F., Klyuchnikov I. G., Chislennyi eksperiment v klassicheskoi gidromekhanike turbulentnykh potokov, UrO RAN, Ekaterinburg, 2001, 161 pp.

[12] Lipanov A. M., Kisarov Yu. F., Klyuchnikov I. G., “Klass raznostnykh skhem vysokogo poryadka tochnosti dlya pryamogo modelirovaniya turbulentnykh potokov pri chislakh Reinoldsa $\mathrm{Re}=10^5$”, Primenenie matematicheskogo modelirovaniya dlya resheniya zadach v nauke i tekhnike, Sbornik trudov nauchnoi konferentsii, IPM UrO RAN, Izhevsk, 1996, 81–102

[13] Lipanov A. M., Semakin A. N., “Primenenie metoda konechnykh ob'emov k zadache obtekaniya sfery”, Materiali za 4-a mezhdunarodna nauchna praktichna konferentsiya “Dinamika izsledovaniya – 2008”. T. 27. Matematika. S'vremenni tekhnologii na informatsii. Zdanie i arkhitektura, “Byal GRAD-BG” OOD, Sofiya, 2008, 31–35