On monotony of balance-characteristic scheme
Matematičeskoe modelirovanie, Tome 21 (2009) no. 7, pp. 29-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions are obtained for difference initial date provided a monotony of balance-characteristic scheme on initial time half-step. It was shown that on elemental time step the scheme is monotone at Curant number $r\in(0,0.5]$ and nonmonotone at $r\in(0.5,1)$ in the case of standard nonlinear correction of flux variables. It was proposed a method provided a monotony of balance-characteristic scheme at Curant number $r\in(0,1]$ at whish the scheme is stable. The binary correction of flux variables lies in the base of the method, it allows conserve the compactness of scheme space stencil. Results of test calculations are presented to demonstrate the advantage of modified scheme.
@article{MM_2009_21_7_a2,
     author = {V. V. Ostapenko},
     title = {On monotony of balance-characteristic scheme},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--42},
     publisher = {mathdoc},
     volume = {21},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_7_a2/}
}
TY  - JOUR
AU  - V. V. Ostapenko
TI  - On monotony of balance-characteristic scheme
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 29
EP  - 42
VL  - 21
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_7_a2/
LA  - ru
ID  - MM_2009_21_7_a2
ER  - 
%0 Journal Article
%A V. V. Ostapenko
%T On monotony of balance-characteristic scheme
%J Matematičeskoe modelirovanie
%D 2009
%P 29-42
%V 21
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_7_a2/
%G ru
%F MM_2009_21_7_a2
V. V. Ostapenko. On monotony of balance-characteristic scheme. Matematičeskoe modelirovanie, Tome 21 (2009) no. 7, pp. 29-42. http://geodesic.mathdoc.fr/item/MM_2009_21_7_a2/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[2] Kulikovskii A. G., Pogorelov N. V., Semenov F. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[3] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 459–464 | MR

[4] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl

[5] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100 | MR

[6] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy ‘Kabare’ ”, Matem. modelirovanie, 10:1 (1998), 101–116 | MR

[7] Goloviznin V. M., Karabasov S. A., “Nelineinaya korrektsiya skhemy Kabare”, Matem. modelirovanie, 10:12 (1998), 107–123

[8] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matematicheskoe modelirovanie, 15:9 (2003), 29–48 | MR | Zbl

[9] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. Sb., 47(89):3 (1959), 271–306 | MR | Zbl

[10] Ostapenko V. V., “O monotonnosti raznostnykh skhem”, Sib. mat. zhurnal, 39:5 (1998), 1111–1126 | MR | Zbl

[11] Ostapenko V. V., “O silnoi monotonnosti trekhtochechnykh raznostnykh skhem”, Sib. mat. zhurnal, 39:6 (1998), 1357–1367 | MR | Zbl

[12] Harten A. A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[13] Ostapenko V. V., “O silnoi monotonnosti nelineinykh raznostnykh skhem”, Zhurnal vychisl. matem. i matem. fiziki, 38:7 (1998), 1170–1185 | MR | Zbl

[14] Ostapenko V. V., “O silnoi monotonnosti raznostnykh skhem dlya sistem zakonov sokhraneniya”, Zhurnal vychisl. matem. i matem. fiziki, 39:10 (1999), 1687–1704 | MR | Zbl

[15] Arora M., Roe P., “On postshock oscillations due to shock capturing schemes in unsteady flows”, J. Comp. Phys., 130 (1996), 25–40 | DOI | MR

[16] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory scheme”, SIAM J. Numer. Analys, 24:2 (1987), 279–309 | DOI | MR | Zbl

[17] Fridrichs K. O., Lax P. D., “Systems of conservation equation with convex extension”, Proc. Natl. Acad. Sci. USA, 68:8 (1971), 1686–1688 | DOI | MR

[18] Ostapenko V. V., “O postroenii raznostnykh skhem povyshennoi tochnosti dlya skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zhurnal vychisl. matem. i matem. fiziki, 40:12 (2000), 1857–1874 | MR | Zbl

[19] Ostapenko V. V., “Simmetrichnye kompaktnye skhemy s iskusstvennymi vyazkostyami povyshennogo poryadka divergentnosti”, Zhurnal vychisl. matem. i matem. fiziki, 42:7 (2002), 1019–1038 | MR | Zbl

[20] Lax P., Wendroff B., “Systems of conservation laws”, Communs Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[21] Harten A., Hyman J. M., Lax P. D., “On finite difference approximations and entropy conditions for shocks”, Communs Pure and Appl. Math., 29 (1976), 297–322 | DOI | MR | Zbl

[22] Goloviznin V. M., Karabasov S. A., “Balansno-kharakteristicheskie skhemy na kusochno-postoyannykh nachalnykh dannykh”, Matem. modelirovanie, 15:10 (2003), 71–83 | MR | Zbl