Modelling of a~floating ice vibrations as a~thin elastic plate
Matematičeskoe modelirovanie, Tome 21 (2009) no. 6, pp. 28-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MM_2009_21_6_a2,
     author = {A. A. Kuleshov and V. V. Mymrin},
     title = {Modelling of a~floating ice vibrations as a~thin elastic plate},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {28--40},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_6_a2/}
}
TY  - JOUR
AU  - A. A. Kuleshov
AU  - V. V. Mymrin
TI  - Modelling of a~floating ice vibrations as a~thin elastic plate
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 28
EP  - 40
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_6_a2/
LA  - ru
ID  - MM_2009_21_6_a2
ER  - 
%0 Journal Article
%A A. A. Kuleshov
%A V. V. Mymrin
%T Modelling of a~floating ice vibrations as a~thin elastic plate
%J Matematičeskoe modelirovanie
%D 2009
%P 28-40
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_6_a2/
%G ru
%F MM_2009_21_6_a2
A. A. Kuleshov; V. V. Mymrin. Modelling of a~floating ice vibrations as a~thin elastic plate. Matematičeskoe modelirovanie, Tome 21 (2009) no. 6, pp. 28-40. http://geodesic.mathdoc.fr/item/MM_2009_21_6_a2/

[1] Kuleshov A. A., “O chislennom metode resheniya zadachi poperechnykh kolebanii tonkikh uprugikh plastin”, Matem. modelirovanie, 17:4 (2005), 10–26 | Zbl

[2] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Fizmatlit, M., 1963

[3] Landau L. D., Lifshits E. M., Teoriya uprugosti, Nauka, M., 1987 | MR | Zbl

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR

[5] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[6] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987

[7] Mokin Yu. I., “Setochnyi analog teoremy vlozheniya dlya klassov tipa $W$”, ZhVM i MF, 11:6 (1971), 1361–1373 | MR | Zbl

[8] Kheisin D. E., Dinamika ledyanogo pokrova, Gidrometeoizdat, L., 1967

[9] Schulkes R. M. S. M., Sneyd A. D., “Time-dependent response of floating ice to a steadily moving load”, J. Fluid Mech., 186 (1988), 25–46 | DOI | Zbl

[10] Miles J., Sneyd A. D., “The response of a floating ice sheet to an accelerating line load”, J. of Fluid Mechanics, 497 (2003), 435–439 | DOI | MR | Zbl

[11] Milinazzo F., Shinbrot M., Evans N. W., “A mathematical analysis of the steady response of floating ice to the uniform motion of a rectangular load”, J. Fluid Mech., 287 (1995), 173–197 | DOI | MR | Zbl

[12] Pǎrǎu E., Dias F., “Nonlinear effects in the response of a floating ice plate to a moving load”, J. of Fluid Mechanics, 460 (2002), 281–305 | MR | Zbl

[13] Dempsey J. P., Zhao Z. G., “Elastohydrodynamic response of ab ice sheet to forced sub-surface uplift”, J. Mech. Phys. Solids, 41:3 (1993), 487–506 | DOI | Zbl

[14] Bogorodskii V. V., Gavrilo V. P., Led. Fizicheskie svoistva. Sovremennye metody glyatsiologii, Gidrometeoizdat, L., 1980

[15] Odinokov V. I., Sergeeva A. M., “Evolyutsiya protsessa narusheniya sploshnosti pri razrushenii ledyanogo pokrova”, PMTF, 49:1 (2008), 114–119