Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_4_a1, author = {A. M. Blokhin and A. S. Ibragimova and B. V. Semisalov}, title = {Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {15--34}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_4_a1/} }
TY - JOUR AU - A. M. Blokhin AU - A. S. Ibragimova AU - B. V. Semisalov TI - Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors JO - Matematičeskoe modelirovanie PY - 2009 SP - 15 EP - 34 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2009_21_4_a1/ LA - ru ID - MM_2009_21_4_a1 ER -
%0 Journal Article %A A. M. Blokhin %A A. S. Ibragimova %A B. V. Semisalov %T Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors %J Matematičeskoe modelirovanie %D 2009 %P 15-34 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2009_21_4_a1/ %G ru %F MM_2009_21_4_a1
A. M. Blokhin; A. S. Ibragimova; B. V. Semisalov. Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors. Matematičeskoe modelirovanie, Tome 21 (2009) no. 4, pp. 15-34. http://geodesic.mathdoc.fr/item/MM_2009_21_4_a1/
[1] A. M. Anile, V. Romano, “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl
[2] V. Romano, “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl
[3] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, t. II, Fizmatgiz, M., 1962
[4] V. Romano, “2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the maximum entropy principle”, J. Comp. Phys., 176 (2002), 70–92 | DOI | Zbl
[5] A. M. Blokhin, R. S. Bushmanov, A. S. Rudometova, V. Romano, “Linear asymptotic stability of the equilibrium state for the 2D MEP hydrodynamical model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 1018–1038 | DOI | MR | Zbl
[6] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[7] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR
[8] K. I. Babenko, Osnovy chislennogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2002
[9] A. M. Blokhin, R. D. Alaev, Integraly energii i ikh prilozheniya k issledovaniyu ustoichivosti raznostnykh skhem, Izd-vo NGU, Novosibirsk, 1993 | MR
[10] A. M. Blokhin, A. S. Ibragimova, N. Yu. Krasnikov, “Ob odnom variante metoda pryamykh dlya uravneniya Puassona”, Vychislitelnye tekhnologii, 12:2 (2007), 33–42
[11] R. Belman, Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR
[12] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR
[13] E. A. Biberdorf, N. I. Popova, Garantirovannaya tochnost sovremennykh algoritmov lineinoi algebry, Izd-vo SO RAN, Novosibirsk, 2006