Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors
Matematičeskoe modelirovanie, Tome 21 (2009) no. 4, pp. 15-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical algorithm is proposed and described in details for finding stationary solutions of the new hydrodynamical model of charge transport in semiconductors.
@article{MM_2009_21_4_a1,
     author = {A. M. Blokhin and A. S. Ibragimova and B. V. Semisalov},
     title = {Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--34},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_4_a1/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - A. S. Ibragimova
AU  - B. V. Semisalov
TI  - Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 15
EP  - 34
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_4_a1/
LA  - ru
ID  - MM_2009_21_4_a1
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A A. S. Ibragimova
%A B. V. Semisalov
%T Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors
%J Matematičeskoe modelirovanie
%D 2009
%P 15-34
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_4_a1/
%G ru
%F MM_2009_21_4_a1
A. M. Blokhin; A. S. Ibragimova; B. V. Semisalov. Designing of computational algorithm for system of moment equations which describe charge transport in semiconductors. Matematičeskoe modelirovanie, Tome 21 (2009) no. 4, pp. 15-34. http://geodesic.mathdoc.fr/item/MM_2009_21_4_a1/

[1] A. M. Anile, V. Romano, “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl

[2] V. Romano, “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl

[3] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, t. II, Fizmatgiz, M., 1962

[4] V. Romano, “2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the maximum entropy principle”, J. Comp. Phys., 176 (2002), 70–92 | DOI | Zbl

[5] A. M. Blokhin, R. S. Bushmanov, A. S. Rudometova, V. Romano, “Linear asymptotic stability of the equilibrium state for the 2D MEP hydrodynamical model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 1018–1038 | DOI | MR | Zbl

[6] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[7] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[8] K. I. Babenko, Osnovy chislennogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2002

[9] A. M. Blokhin, R. D. Alaev, Integraly energii i ikh prilozheniya k issledovaniyu ustoichivosti raznostnykh skhem, Izd-vo NGU, Novosibirsk, 1993 | MR

[10] A. M. Blokhin, A. S. Ibragimova, N. Yu. Krasnikov, “Ob odnom variante metoda pryamykh dlya uravneniya Puassona”, Vychislitelnye tekhnologii, 12:2 (2007), 33–42

[11] R. Belman, Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[12] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR

[13] E. A. Biberdorf, N. I. Popova, Garantirovannaya tochnost sovremennykh algoritmov lineinoi algebry, Izd-vo SO RAN, Novosibirsk, 2006