Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area
Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-dimensional problem of a solitary pressure wave in a liquid with air bubbles is considered. The liquid is supposed to be compressible, dynamics of bubbles oscillation are described by Herring–Flynn equation. Conditions of regimes of the pressure wave propagation in the liquid with bubbles area of rectangular section are investigated. Influence of the gas volume content and of the channel width on a waveform is studied. Values of parameters of mathematical model for which the pressure wave amplitude surpasses initial one are obtained. The wave structure in bubble area is discussed. Parameters at which the stable mode is keeping for a long time in the bubble channel are found.
@article{MM_2009_21_3_a0,
     author = {N. A. Kudryashov and N. A. Teterev},
     title = {Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_3_a0/}
}
TY  - JOUR
AU  - N. A. Kudryashov
AU  - N. A. Teterev
TI  - Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 3
EP  - 17
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_3_a0/
LA  - ru
ID  - MM_2009_21_3_a0
ER  - 
%0 Journal Article
%A N. A. Kudryashov
%A N. A. Teterev
%T Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area
%J Matematičeskoe modelirovanie
%D 2009
%P 3-17
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_3_a0/
%G ru
%F MM_2009_21_3_a0
N. A. Kudryashov; N. A. Teterev. Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area. Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2009_21_3_a0/

[1] L. Rayleigh, “On the pressure developed in a liquid during collapse of a spherical cavity”, Philos. Mag., 6:34 (1917), 94–98 | Zbl

[2] W. Nusselt, “Die Oberflachenkondensation des Wasserdampfes”, VDI-Z., 27:1 (1916), 541–546

[3] W. Rybczynski, “Uber die fortschreitende Bewegung einer flussigen Kudel in einem zahen Medium”, Bull. int. de l'Acad. de Sciences de Cracovie. Ser. A Sciences mathematiques, 1 (1911), 40–46

[4] J. Hadamar, “Mouvement permanent Sent d'une sphere liquide et visqueuse dans un liquide visqueux”, Compt. Rend. Acad. Sci., 152 (1911), 1735–1738 | Zbl

[5] R. I. Nigmatulin, Dinamika mnogofaznykh sred, ch. 1, Nauka, M., 1987, 464 pp.; ч. 2, 360 с.

[6] V. E. Nakoryakov, S. S. Kutateladze, Teplomassoobmen i volny v gazozhidkostnykh sistemakh, Nauka, Novosibirsk, 1984, 304 pp.

[7] V. E. Nakoryakov, B. G. Pokusaev, I. R. Shreiber, Volnovaya dinamika gazo- i parozhidkostnykh sred, Energoatomizdat, M., 1990, 248 pp. | MR

[8] D. F. Gaitan, L. A. Crum, “Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble”, J. Acoust. Soc. Am., 91 (1992), 3166–3181 | DOI

[9] M. P. Brenner, S. Hilgenfeldt, D. Lohse, “Single-bubble sonoluminescence”, Rev. Modern Phys., 74:2 (2002), 425–484 | DOI

[10] M. A. Margulis, “Sonolyuminestsentsiya”, UFN, 170:3 (2000), 263–287 | DOI | MR

[11] I. J. Cambell, A. S. Pitcher, “Shock waves in a liquid containing gas bubbles”, Proc. Roy. Soc. Ser. A, 243:1235 (1958), 534–545 | DOI

[12] B. R. Parkin, F. R. Gilmor, G. L. Broud, “Udarnye volny v vode s puzyrkami vozdukha”, Podvodnye i podzemnye vzryvy, Mir, M., 1972, 152–258

[13] T. G. Leighton, S. D. Meers, P. R. White, “Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics”, Proc. R. Soc. Lond A, 2004, 2521–2550 | MR | Zbl

[14] R. H. J. Grimshaw, K. R. Khusnutdinova, The effect of bubbles on internal waves, PACS numbers: 47.55. Hd, 47.55. Kf., 2002, 18 pp.

[15] A. A. Doinikov (ed.), Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Application (Research Signpost, Trivandrum, Kerala, 2005), 338 pp.

[16] V. Sboros, C. A. MacDonald, S. D. Pye, C. M. Moran, J. Gomatam, W. N. McDicken, “The dependence of ultra-sound contrast agents backscatter on acoustic pressure: theory versus experiment”, Ultrasonics, 40 (2002), 579–583 | DOI

[17] James E. Chomas, Paul A. Dayton, Donovan May, John Allen, “Optical observation of contrast agent destruction”, Appl. Phys. Lett., 77:7 (2000), 1056–1058 | DOI

[18] T. G. Leighton, The Acoustic Bubble, Academic, London, 1994

[19] R. I. Nigmatulin, V. Sh. Shagapov, I. K. Gimaltdinov, M. N. Galimzyanov, “Dvumernye volny davleniya v zhidkosti, soderzhaschei puzyrkovye zony”, DAN, 378:6 (2001), 763–768

[20] M. N. Galimzyanov, I. K. Gimaltdinov, V. Sh. Shagapov, “Dvumernye volny davleniya v zhidkosti, soderzhaschei puzyrki”, Mekhanika zhidkosti i gaza, 2002, no. 2, 139–147 | Zbl

[21] I. K. Gimaltdinov, “O zatukhanii impulsnykh vozmuschenii v trube s puzyrkovoi zhidkostyu so stupenchatym raspredeleniem puzyrkov po secheniyu”, Vestnik OGU. Estestvennye nauki, 2:2 (2006), 65–74

[22] N. A. Kudryashov, N. A. Teterev, Numerical modeling of sound signal propagation through a liquid with bubble area, CD-ROM Proc. of the 13th Int. Congress on Sound and Vibration, ICSV13 (Vienna, Austria, July 2–6, 2006), ISBN: 3-95-01554-5-7

[23] L. I. Sedov, Mekhanika sploshnoi sredy, T. 1, Nauka, M., 1970, 492 pp. | MR

[24] F. M. Baum, L. P. Orlenko, K. P. Stanyukovich i dr., Fizika vzryva, Nauka, M., 1975, 704 pp. | Zbl

[25] L. Trilling, “The collaps and rebound of a gas bubble”, J. Appl. Phys., 23 (1952), 14–17 | DOI | MR

[26] H. G. Flynn, “Physics of Acoustics Cavitation in Liquids”, Physical Acoustics, V. 1B, eds. W. P. Mason, Academic Press, London, 1964, 57–172

[27] R. I. Nigmatulim, “Mathematical modeling of bubbly liquid motion and hydrodynamical effects in wave propagation phenomenon”, Appl. Scientific Research, 38 (1982), 267–289 | DOI

[28] K. Fletcher, Vychislitelnye metody v dinamike zhidkostei, V 2-kh t., T. 2., Per. s angl., Mir, M., 1991, 552 pp. | MR

[29] D. Anderson, Dzh. Tannekhill, R. Pletcher, Vychislitelnaya gidrodinamika i teploobmen, V 2-kh t., T. 1, Per. s angl., Mir, M., 1990, 334 pp. | MR | Zbl

[30] D. Potter, Vychislitelnye metody v fizike, Per. s angl., Mir, M., 1975, 392 pp.

[31] B. Older, S. Fernbakh, M. Rotenberg, Vychislitelnye metody v gidrodinamike, Per. s angl., Mir, M., 1967, 384 pp.

[32] N. A. Teterev, “Chislennoe reshenie zadachi o rasprostranenii udarnoi volny v gazozhidkostnoi srede s uchetom teploobmena”, materialy XVI Mezhdunarodnoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh “Lomonosov 2007”, V 4 t., T. 2, SP “Mysl”, M., 2007, 110