Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_3_a0, author = {N. A. Kudryashov and N. A. Teterev}, title = {Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--17}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_3_a0/} }
TY - JOUR AU - N. A. Kudryashov AU - N. A. Teterev TI - Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area JO - Matematičeskoe modelirovanie PY - 2009 SP - 3 EP - 17 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2009_21_3_a0/ LA - ru ID - MM_2009_21_3_a0 ER -
%0 Journal Article %A N. A. Kudryashov %A N. A. Teterev %T Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area %J Matematičeskoe modelirovanie %D 2009 %P 3-17 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2009_21_3_a0/ %G ru %F MM_2009_21_3_a0
N. A. Kudryashov; N. A. Teterev. Numerical modeling of the solitary pressure wave propagation in a~liquid containing bubble area. Matematičeskoe modelirovanie, Tome 21 (2009) no. 3, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2009_21_3_a0/
[1] L. Rayleigh, “On the pressure developed in a liquid during collapse of a spherical cavity”, Philos. Mag., 6:34 (1917), 94–98 | Zbl
[2] W. Nusselt, “Die Oberflachenkondensation des Wasserdampfes”, VDI-Z., 27:1 (1916), 541–546
[3] W. Rybczynski, “Uber die fortschreitende Bewegung einer flussigen Kudel in einem zahen Medium”, Bull. int. de l'Acad. de Sciences de Cracovie. Ser. A Sciences mathematiques, 1 (1911), 40–46
[4] J. Hadamar, “Mouvement permanent Sent d'une sphere liquide et visqueuse dans un liquide visqueux”, Compt. Rend. Acad. Sci., 152 (1911), 1735–1738 | Zbl
[5] R. I. Nigmatulin, Dinamika mnogofaznykh sred, ch. 1, Nauka, M., 1987, 464 pp.; ч. 2, 360 с.
[6] V. E. Nakoryakov, S. S. Kutateladze, Teplomassoobmen i volny v gazozhidkostnykh sistemakh, Nauka, Novosibirsk, 1984, 304 pp.
[7] V. E. Nakoryakov, B. G. Pokusaev, I. R. Shreiber, Volnovaya dinamika gazo- i parozhidkostnykh sred, Energoatomizdat, M., 1990, 248 pp. | MR
[8] D. F. Gaitan, L. A. Crum, “Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble”, J. Acoust. Soc. Am., 91 (1992), 3166–3181 | DOI
[9] M. P. Brenner, S. Hilgenfeldt, D. Lohse, “Single-bubble sonoluminescence”, Rev. Modern Phys., 74:2 (2002), 425–484 | DOI
[10] M. A. Margulis, “Sonolyuminestsentsiya”, UFN, 170:3 (2000), 263–287 | DOI | MR
[11] I. J. Cambell, A. S. Pitcher, “Shock waves in a liquid containing gas bubbles”, Proc. Roy. Soc. Ser. A, 243:1235 (1958), 534–545 | DOI
[12] B. R. Parkin, F. R. Gilmor, G. L. Broud, “Udarnye volny v vode s puzyrkami vozdukha”, Podvodnye i podzemnye vzryvy, Mir, M., 1972, 152–258
[13] T. G. Leighton, S. D. Meers, P. R. White, “Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics”, Proc. R. Soc. Lond A, 2004, 2521–2550 | MR | Zbl
[14] R. H. J. Grimshaw, K. R. Khusnutdinova, The effect of bubbles on internal waves, PACS numbers: 47.55. Hd, 47.55. Kf., 2002, 18 pp.
[15] A. A. Doinikov (ed.), Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Application (Research Signpost, Trivandrum, Kerala, 2005), 338 pp.
[16] V. Sboros, C. A. MacDonald, S. D. Pye, C. M. Moran, J. Gomatam, W. N. McDicken, “The dependence of ultra-sound contrast agents backscatter on acoustic pressure: theory versus experiment”, Ultrasonics, 40 (2002), 579–583 | DOI
[17] James E. Chomas, Paul A. Dayton, Donovan May, John Allen, “Optical observation of contrast agent destruction”, Appl. Phys. Lett., 77:7 (2000), 1056–1058 | DOI
[18] T. G. Leighton, The Acoustic Bubble, Academic, London, 1994
[19] R. I. Nigmatulin, V. Sh. Shagapov, I. K. Gimaltdinov, M. N. Galimzyanov, “Dvumernye volny davleniya v zhidkosti, soderzhaschei puzyrkovye zony”, DAN, 378:6 (2001), 763–768
[20] M. N. Galimzyanov, I. K. Gimaltdinov, V. Sh. Shagapov, “Dvumernye volny davleniya v zhidkosti, soderzhaschei puzyrki”, Mekhanika zhidkosti i gaza, 2002, no. 2, 139–147 | Zbl
[21] I. K. Gimaltdinov, “O zatukhanii impulsnykh vozmuschenii v trube s puzyrkovoi zhidkostyu so stupenchatym raspredeleniem puzyrkov po secheniyu”, Vestnik OGU. Estestvennye nauki, 2:2 (2006), 65–74
[22] N. A. Kudryashov, N. A. Teterev, Numerical modeling of sound signal propagation through a liquid with bubble area, CD-ROM Proc. of the 13th Int. Congress on Sound and Vibration, ICSV13 (Vienna, Austria, July 2–6, 2006), ISBN: 3-95-01554-5-7
[23] L. I. Sedov, Mekhanika sploshnoi sredy, T. 1, Nauka, M., 1970, 492 pp. | MR
[24] F. M. Baum, L. P. Orlenko, K. P. Stanyukovich i dr., Fizika vzryva, Nauka, M., 1975, 704 pp. | Zbl
[25] L. Trilling, “The collaps and rebound of a gas bubble”, J. Appl. Phys., 23 (1952), 14–17 | DOI | MR
[26] H. G. Flynn, “Physics of Acoustics Cavitation in Liquids”, Physical Acoustics, V. 1B, eds. W. P. Mason, Academic Press, London, 1964, 57–172
[27] R. I. Nigmatulim, “Mathematical modeling of bubbly liquid motion and hydrodynamical effects in wave propagation phenomenon”, Appl. Scientific Research, 38 (1982), 267–289 | DOI
[28] K. Fletcher, Vychislitelnye metody v dinamike zhidkostei, V 2-kh t., T. 2., Per. s angl., Mir, M., 1991, 552 pp. | MR
[29] D. Anderson, Dzh. Tannekhill, R. Pletcher, Vychislitelnaya gidrodinamika i teploobmen, V 2-kh t., T. 1, Per. s angl., Mir, M., 1990, 334 pp. | MR | Zbl
[30] D. Potter, Vychislitelnye metody v fizike, Per. s angl., Mir, M., 1975, 392 pp.
[31] B. Older, S. Fernbakh, M. Rotenberg, Vychislitelnye metody v gidrodinamike, Per. s angl., Mir, M., 1967, 384 pp.
[32] N. A. Teterev, “Chislennoe reshenie zadachi o rasprostranenii udarnoi volny v gazozhidkostnoi srede s uchetom teploobmena”, materialy XVI Mezhdunarodnoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh “Lomonosov 2007”, V 4 t., T. 2, SP “Mysl”, M., 2007, 110