Stability investigation of almost periodic discrete system by direct Lyapunov method and limiting equations technique
Matematičeskoe modelirovanie, Tome 21 (2009) no. 1, pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of topological dynamic of almost periodic discrete system is elaborated as well as the invariance property of positive limit set of it's solution is established. On the basis of synthesis of limiting equations technique and Lyapunov functions method a theorem on localization of positive limit set and several theorems on asymptotic and partial asymptotic stability are proven. The demands on Lyapunov function are relaxed so it admissible to use nonnegative functions with nonpositive first difference.
@article{MM_2009_21_1_a2,
     author = {A. Yu. Bogdanov},
     title = {Stability investigation of almost periodic discrete system by direct {Lyapunov} method and limiting equations technique},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--32},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_1_a2/}
}
TY  - JOUR
AU  - A. Yu. Bogdanov
TI  - Stability investigation of almost periodic discrete system by direct Lyapunov method and limiting equations technique
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 25
EP  - 32
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_1_a2/
LA  - ru
ID  - MM_2009_21_1_a2
ER  - 
%0 Journal Article
%A A. Yu. Bogdanov
%T Stability investigation of almost periodic discrete system by direct Lyapunov method and limiting equations technique
%J Matematičeskoe modelirovanie
%D 2009
%P 25-32
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_1_a2/
%G ru
%F MM_2009_21_1_a2
A. Yu. Bogdanov. Stability investigation of almost periodic discrete system by direct Lyapunov method and limiting equations technique. Matematičeskoe modelirovanie, Tome 21 (2009) no. 1, pp. 25-32. http://geodesic.mathdoc.fr/item/MM_2009_21_1_a2/

[1] Bor G., Pochti periodicheskie funktsii, Gostekhizdat, M., 1934

[2] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971 | MR

[3] Kirichenova O. V., “Ob ustoichivosti reshenii nelineinykh pochti periodicheskikh sistem raznostnykh uravnenii”, Sibirskii matematicheskii zhurnal, 39:1 (1998), 45–48 | MR | Zbl

[4] Dobrovolskii S. M., Rogozin A. V., “Pryamoi metod Lyapunova dlya pochti periodicheskoi raznostnoi sistemy na kompakte”, Sibirskii matematicheskii zhurnal, 46:1 (2005), 98–105 | MR | Zbl

[5] Ignatev A. O., “Ob ustoichivosti nulevogo resheniya pochti periodicheskoi sistemy raznostnykh uravnenii”, Differentsialnye uravneniya, 40:1 (2004), 98–103 | MR

[6] Sell G. R., “Nonautonomous differential equations and topological dynamics”, Trans. AMS, 127 (1967), 241–283 | DOI | MR | Zbl

[7] Zhikov V. V., Levitan B. M., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[8] Bogdanov A. Yu., “Metod predelnykh funktsiiv teorii ustoichivosti raznostnykh uravnenii”, Kombinatornye i vychislitelnye metody v matematike, Sb. nauch. trudov Sibirskogo otdeleniya RAN, Omsk, 1999, 82–94

[9] Hahn W., “The present state of Lyapunov's direct method”, Nonlinear problems, ed. R. E. Langer, University of Wisconsin Press, 1963, 195–205 | MR

[10] Conley C. C., Miller R. K., “Asymptotic stability without uniform stability: almost periodic coefficients”, J. Differential Eqs., 1 (1965), 333–336 | DOI | MR | Zbl

[11] Miller R. K., “Asymptotic behavior of solutions of nonlinear differential equations”, Trans. AMS, 111 (1965), 401–406 | MR

[12] Ignatev A. O., “Ob ekviasimptoticheskoi ustoichivosti po chasti peremennykh”, Prikladnaya matematika i mekhanika, 63:5 (1999), 871–875 | MR