Two-phase shock layer in supersonic dusty gas flow
Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 89-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is dedicated to the problems of numerical modeling of supersonic flow with an admixture of particles over blunt bodies. The model of the two-phase shock layer is based on combination of an Euler description of the gas phase and a Lagrangian description of the dispersed phase. In so doing we use the full-scaled variant of the discrete-element method, i.e. it performs direct numerical modeling of the admixture dynamics. The effect of collisional and collisionless particle admixture on the flow of the carrying gas and convective heat transfer is studied as well as the direct impact of the two-phase flow on the streamlined body.
@article{MM_2009_21_12_a6,
     author = {V. V. Vinnikov and D. L. Reviznikov and A. V. Sposobin},
     title = {Two-phase shock layer in supersonic dusty gas flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {21},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_12_a6/}
}
TY  - JOUR
AU  - V. V. Vinnikov
AU  - D. L. Reviznikov
AU  - A. V. Sposobin
TI  - Two-phase shock layer in supersonic dusty gas flow
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 89
EP  - 102
VL  - 21
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_12_a6/
LA  - ru
ID  - MM_2009_21_12_a6
ER  - 
%0 Journal Article
%A V. V. Vinnikov
%A D. L. Reviznikov
%A A. V. Sposobin
%T Two-phase shock layer in supersonic dusty gas flow
%J Matematičeskoe modelirovanie
%D 2009
%P 89-102
%V 21
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_12_a6/
%G ru
%F MM_2009_21_12_a6
V. V. Vinnikov; D. L. Reviznikov; A. V. Sposobin. Two-phase shock layer in supersonic dusty gas flow. Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 89-102. http://geodesic.mathdoc.fr/item/MM_2009_21_12_a6/

[1] Nigmatulin R. I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978, 336 pp. | MR

[2] Sternin L. E., Maslov B. N., Shraiber A. A., Podvysotskii A. M., Dvukhfaznye mono- i polidispersnye techeniya gaza s chastitsami, Mashinostroenie, M., 1980, 172 pp.

[3] Crowe C. T., Sommerfeld M., Tsuji Y., Multiphase flows with droplets and particles, CRC Press LLC, 1998, 471 pp.

[4] Gilinskii M. M., Stasenko A. L., Sverkhzvukovye gazodispersnye strui, Mashinostroenie, M., 1990, 176 pp.

[5] Tsirkunov Yu. M., “Gas-particle flows around bodies – key problems, modeling and numerical analysis”, Proc. Fourth International Conference on Multiphase Flow (May 27 – June 1, 2001, New Orleans, LA, USA), ed. E. Michaelides

[6] Varaksin A. Yu., Turbulentnye techeniya gaza s tverdymi chastitsami, Fizmatlit, M., 2003

[7] Timoshenko V. I., Zubkova E. Yu., “K otsenke teplovogo i erozionnogo vozdeistviya sverkhzvukovogo zapylennogo potoka na zatuplennyi konus”, IFZh, 61:4 (1991), 564–569

[8] Golovachev Yu. V., Shmidt A. A., “Obtekanie zatuplennogo tela sverkhzvukovym potokom zapylennogo gaza”, Izv. AN SSSR, MZhG, 1982, no. 3, 73–77

[9] Osiptsov A. N., Shapiro E. G., “Obtekanie sfery zapylennym gazom s bolshoi sverkhzvukovoi skorostyu”, Issledovanie gazodinamiki i teploobmena slozhnykh techenii odnorodnykh i mnogofaznykh sred, ed. Stulov V. P., Izd-vo MGU, M., 1990, 89–105

[10] Crowe C. T., “Review – numerical models for dilute gas-particle flows”, ASME J. Fluid Engineering, 104:3 (1982), 297–303 | DOI

[11] Vinnikov V. V., Reviznikov D. L., “Metod pogruzhennoi granitsy dlya rascheta sverkhzvukovogo obtekaniya zatuplennykh tel na pryamougolnykh setkakh”, Elektronnyi zhurnal “Trudy MAI”, 27 (2007), 13 pp.

[12] Kitron A., Elperin T., Tamir A., “Monte Carlo analysis of wall erosion and direct contact heat transfer by impinging two-phase jets”, J. Thermophysics and Heat Transfer, 3:2 (1989), 112–122 | DOI

[13] Volkov A. N., Tsirkunov Yu. M., Semënov V. V., “Vliyanie mono- i polidispersnoi primesi na techenie i teploobmen pri sverkhzvukovom obtekanii zatuplennogo tela potokom gazovzvesi”, Matematicheskoe modelirovanie, 16:7 (2004), 6–12 | Zbl

[14] Volkov A. N., Tsirkunov Yu. M., Oesterle B., “Numerical simulation of a supersonic gas-solid flow over a blunt body: The role of inter-particle collisions and two-way coupling effects”, Int. J. Multiphase Flow, 31 (2005), 1244–1275 | DOI | Zbl

[15] Kolesnikov K. S., Leontev A. I. (red.), Mashinostroenie. T. 1–2. Teoreticheskaya mekhanika, termodinamika, teploobmen, Entsiklopediya v 40 t., Mashinostroenie, M., 1999, 600 pp. | Zbl

[16] Mikhatulin D. S., Polezhaev Yu. V., Reviznikov D. L., “Issledovanie razrusheniya stekloplastika pri polete v zapylennoi atmosfere”, Teplofizika vysokikh temperatur, 39:4 (2001), 640–648

[17] Mikhatulin D. S., Polezhaev Yu. V., Reviznikov D. L., “Issledovanie razrusheniya uglerodnogo teplozaschitnogo materiala pri polete v zapylennoi atmosfere”, Teplofizika vysokikh temperatur, 41:1 (2003), 98–105

[18] Mikhatulin D. S., Polezhaev Yu. V., Reviznikov D. L., Teploobmen i razrushenie tel v sverkhzvukovom geterogennom potoke, YaNUS-K, M., 2007, 392 pp.

[19] Harten A., Lax P. D., van Leer B., “On Upstream Differencing and Godunov-type Schemes for Hyperbolic Conservation Laws”, SIAM Review, 25:1 (1983), 35–61 | DOI | MR | Zbl

[20] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, FIZMATLIT, M., 2001, 608 pp. | MR