Nonequilibrium transport processes in problems on the nonuniform relaxation
Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Boltzmann equation for mixtures of simple gases and also the model kinetic equation are solved for simulation of nonequilibrium processes at a scale of a mean free path in spatially nonuniform relaxation structures. The mixture of gases is considered because for a more complex medium it is possible to obtain a more complex nonequilibrium structure in this open system. Nonuniform steady relaxation processes for 1D and 2D cases are studied. The important relations observed earlier for a one-component gas are revealed. It is shown that transport in the relaxation zone is realized in a nonclassical manner. In particular, the heat flux of the mixture has the same direction as the gradient of the temperature of the mixture. The nonequilibrium convective heating or cooling of the region downflow depending on if the heat flux on the boundary is positive or negative is observed. It is also shown that the sign of the velocity gradient can be the same as the sign of the appropriate component of the nonequilibrium viscous stress tensor.
@article{MM_2009_21_12_a4,
     author = {V. V. Aristov and S. A. Zabelok and A. A. Frolova},
     title = {Nonequilibrium transport processes in problems on the nonuniform relaxation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {21},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_12_a4/}
}
TY  - JOUR
AU  - V. V. Aristov
AU  - S. A. Zabelok
AU  - A. A. Frolova
TI  - Nonequilibrium transport processes in problems on the nonuniform relaxation
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 59
EP  - 75
VL  - 21
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_12_a4/
LA  - ru
ID  - MM_2009_21_12_a4
ER  - 
%0 Journal Article
%A V. V. Aristov
%A S. A. Zabelok
%A A. A. Frolova
%T Nonequilibrium transport processes in problems on the nonuniform relaxation
%J Matematičeskoe modelirovanie
%D 2009
%P 59-75
%V 21
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_12_a4/
%G ru
%F MM_2009_21_12_a4
V. V. Aristov; S. A. Zabelok; A. A. Frolova. Nonequilibrium transport processes in problems on the nonuniform relaxation. Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 59-75. http://geodesic.mathdoc.fr/item/MM_2009_21_12_a4/

[1] Aristov V. V., “Development of the regular method of solution of the Boltzmann equation and nonuniform relaxation problems”, Proc. 17th Intern. Symp. on Raref. Gas Dynam., ed. A. Beylich, Weinheim, 1991, 879–885

[2] Aristov V. V., “Vozmozhnost anomalnoi teploprovodnosti v techeniyakh razrezhennogo gaza”, Trudy 1-i Rossiiskoi natsionalnoi konferentsii po teploobmenu, t. 10, ch. 2, MEI, M., 1994, 36–41

[3] Aristov V. V., “Spatial relaxation processes and the possible decreasing of entropy”, Proc. 19th Intern. Symp. on Raref. Gas Dynam., v. 1, eds. P. Harvey et al., Oxford Univ. Press, Oxford, 1995, 43–49 | MR

[4] Aristov V. V., “A steady state, supersonic flow solution of the Boltzmann equation”, Phys. Letters A, 250 (1998), 354–359 | DOI

[5] Schneider M. N. et al., “Controlling the motion of cold molecules with deep periodic optical potentials”, Nature. Physics, 2 (2006), 465–466 | DOI

[6] Aristov V. V., “Nonuniform relaxation problem for mixtures and effects of the anomalous heat transfer”, Proc. of the 24th Intern. Symp. on Rarefied Gas Dynamics, Melville, N.Y., 2005, 288–293

[7] Kolobov V. I., Arslanbekov R. R., Aristov V. V., Frolova A. A., Zabelok S. A., “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement”, Journal of Computational Physics, 223 (2007), 589–608 | DOI | Zbl

[8] Andries P., Aoki K., Perthame B., “A consistent BGK-type model for gas mixtures”, J. Stat. Phys., 106 (2002), 993–1017 | DOI | MR

[9] Goldman E., Sirovich L., “Equations of gas mixtures”, Phys. Fluids, 10 (1967), 1928–1940 | DOI

[10] Aristov V. V., Direct methods of solving the Boltzmann equation and study of nonequilibrium flows, Kluwer Academic Publishers, Dordrecht, 2001, 312 pp. | MR | Zbl

[11] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967 | Zbl

[12] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976