Numerical continuation of solution in bifurcation points of mathematical models
Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the problem of numerical continuation of the solution in a neighborhood of the bifurcation points of the system of nonlinear algebraic or transcendental equations is considered.
@article{MM_2009_21_12_a3,
     author = {S. D. Krasnikov and E. B. Kuznetsov},
     title = {Numerical continuation of solution in bifurcation points of mathematical models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {21},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_12_a3/}
}
TY  - JOUR
AU  - S. D. Krasnikov
AU  - E. B. Kuznetsov
TI  - Numerical continuation of solution in bifurcation points of mathematical models
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 47
EP  - 58
VL  - 21
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_12_a3/
LA  - ru
ID  - MM_2009_21_12_a3
ER  - 
%0 Journal Article
%A S. D. Krasnikov
%A E. B. Kuznetsov
%T Numerical continuation of solution in bifurcation points of mathematical models
%J Matematičeskoe modelirovanie
%D 2009
%P 47-58
%V 21
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_12_a3/
%G ru
%F MM_2009_21_12_a3
S. D. Krasnikov; E. B. Kuznetsov. Numerical continuation of solution in bifurcation points of mathematical models. Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 47-58. http://geodesic.mathdoc.fr/item/MM_2009_21_12_a3/

[1] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 1, Izd-vo “Lan”, SPb., 1997

[2] Shalashilin V. I., Kuznetsov E. B., Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Kluwer Academic Publishers, Dordrecht–Boston–London, 2003, 236 pp. | MR | MR | Zbl

[3] Keller H. B., Lectures on numerical methods in bifurcation problems, Springer, Berlin, 1987 | MR

[4] Allgower E. L., Georg K., Numerical Continuation Methods: An Introduction, Series in Computational Mathematics, 13, Springer Verlag, Berlin–Heidelberg–New York, 1990 | MR | Zbl

[5] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl

[6] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivoi iteratsionnym metodom”, Dokl. RAN, 396:6 (2004), 746–748 | MR | Zbl

[7] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya chislennogo resheniya kraevykh zadach dlya nelineinykh differentsialnykh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 45:12 (2005), 2148–2158 | MR | Zbl

[8] Ginzburg V. L., Landau L. D., “K teorii sverkhprovodimosti”, Zh. eksperim. i teor. fiz., 20:12 (1950), 1064–1082

[9] Dyshko A. L., Zharkov G. F., Konyukhova N. B., Kurochkin S. V., “Analitiko-chislennye issledovaniya nelineinoi kraevoi zadachi sverkhprovodyaschei plastiny v magnitnom pole”, Zhurn. vychisl. matem. i matem. fiz., 45:9 (2005), 1651–1676 | MR | Zbl

[10] Lahaye M. E., “Une methode de resolution d'une categorie d'equations transcendentes”, Compt. Rendus hebdomataires des seances de L'Academie des sciences, 198:21 (1934), 1840–1842 | Zbl

[11] Roberts S. M., Shipman J. S., Two – point boundary value problems: shooting methods, Elsevier, New York, 1972 | MR | Zbl