Quasi gas dynamics equations
Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 145-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on a system of stochastic differential equations, describing a gas at small Knudsen numbers, explicit equations of gas dynamics with additional small terms for the simplest Fokker–Planck model of Boltzmann collision integral are obtained.
@article{MM_2009_21_12_a11,
     author = {S. V. Bogomolov},
     title = {Quasi gas dynamics equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {145--151},
     publisher = {mathdoc},
     volume = {21},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_12_a11/}
}
TY  - JOUR
AU  - S. V. Bogomolov
TI  - Quasi gas dynamics equations
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 145
EP  - 151
VL  - 21
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_12_a11/
LA  - ru
ID  - MM_2009_21_12_a11
ER  - 
%0 Journal Article
%A S. V. Bogomolov
%T Quasi gas dynamics equations
%J Matematičeskoe modelirovanie
%D 2009
%P 145-151
%V 21
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_12_a11/
%G ru
%F MM_2009_21_12_a11
S. V. Bogomolov. Quasi gas dynamics equations. Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 145-151. http://geodesic.mathdoc.fr/item/MM_2009_21_12_a11/

[1] A. V. Skorokhod, Stokhasticheskie uravneniya dlya slozhnykh sistem, Nauka, M., 1983 | MR

[2] A. A. Arsenev, Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992 | MR

[3] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[4] C. Cercignani, Rarefied Gas Dynamics, Cambridge University Press, 2000 | MR | Zbl

[5] B. N. Chetverushkin, Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[6] Yu. L. Klimontovich, “O neobkhodimosti i vozmozhnosti edinogo opisaniya kineticheskikh i gidrodinamicheskikh protsessov”, Teor. i matem. fizika, 92:2 (1992), 312–330 | MR | Zbl

[7] G. Repke, Neravnovesnaya statisticheskaya mekhanika, Mir, M., 1990 | MR

[8] K. A. Oelschlager, “Martingale approach to the law of large number for weakly interacting stochastic processes”, The Annals of Probability, 12:2 (1984), 458 | DOI | MR

[9] V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, S. A. Zabelok, “Unified Solver for Rarefied and Continuum Flows with Adaptive Mesh and Algorithm Refinement”, Journal of Computational Physics, 223:2 (2007), 589–608 | DOI | Zbl

[10] K. Morinishi, “A Continuum/Kinetic Hybrid Approach for Multi-Scale Flow Simulation”, European Conference on Computational Fluid Dynamics ECCOMAS, CFD 2006 (TU Delft, the Netherlands)

[11] P. Degond, M. Lemou, “Turbulence models for incompressible fluids derived from kinetic theory”, J. Math., 4:3 (2002), 257–284 | MR | Zbl

[12] T. G. Elizarova, Kvazigidrodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[13] B. Oksendal, Stokhasticheskie differentsialnye uravneniya, Mir, M., 2003

[14] S. V. Bogomolov, “Stokhasticheskaya model gidrodinamiki”, Matematicheskoe modelirovanie, 2:11 (1990), 85–88 | MR | Zbl

[15] S. V. Bogomolov, “Uravnenie Fokkera–Planka dlya gaza pri umerennykh chislakh Knudsena”, Matematicheskoe modelirovanie, 15:4 (2003), 16–22 | MR | Zbl

[16] S. V. Bogomolov, “O modeli Fokkera–Planka dlya integrala stolknovenii Boltsmana pri umerennykh chislakh Knudsena”, Matematicheskoe modelirovanie, 21:1 (2009), 111–117 | MR | Zbl

[17] S. V. Bogomolov, “Ob odnom podkhode k polucheniyu stokhasticheskikh modelei gazodinamiki”, DAN, 423:4 (2008), 458–460 | MR | Zbl