Some parallel iterative methods for solving elliptic equations on tetrahedral grids
Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 3-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Parallel versions of modified incomplete Cholesky conjugate gradient method with regularized preconditioner are proposed for solving elliptic equations on tetrahedral grids on MIMD parallel computers. The constructed parallel methods use special grid points orderings correlated with domain decomposition. The convergence rates of the proposed parallel methods are examined both theoretically and numerically by analyzing a number of model problems. The comparison of convergence rates of prorosed method and some ather well-known methods is performed.
@article{MM_2009_21_12_a0,
     author = {O. Yu. Milyukova and I. V. Popov},
     title = {Some parallel iterative methods for solving elliptic equations on tetrahedral grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {21},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_12_a0/}
}
TY  - JOUR
AU  - O. Yu. Milyukova
AU  - I. V. Popov
TI  - Some parallel iterative methods for solving elliptic equations on tetrahedral grids
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 3
EP  - 20
VL  - 21
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_12_a0/
LA  - ru
ID  - MM_2009_21_12_a0
ER  - 
%0 Journal Article
%A O. Yu. Milyukova
%A I. V. Popov
%T Some parallel iterative methods for solving elliptic equations on tetrahedral grids
%J Matematičeskoe modelirovanie
%D 2009
%P 3-20
%V 21
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_12_a0/
%G ru
%F MM_2009_21_12_a0
O. Yu. Milyukova; I. V. Popov. Some parallel iterative methods for solving elliptic equations on tetrahedral grids. Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2009_21_12_a0/