Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_12_a0, author = {O. Yu. Milyukova and I. V. Popov}, title = {Some parallel iterative methods for solving elliptic equations on tetrahedral grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--20}, publisher = {mathdoc}, volume = {21}, number = {12}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_12_a0/} }
TY - JOUR AU - O. Yu. Milyukova AU - I. V. Popov TI - Some parallel iterative methods for solving elliptic equations on tetrahedral grids JO - Matematičeskoe modelirovanie PY - 2009 SP - 3 EP - 20 VL - 21 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2009_21_12_a0/ LA - ru ID - MM_2009_21_12_a0 ER -
O. Yu. Milyukova; I. V. Popov. Some parallel iterative methods for solving elliptic equations on tetrahedral grids. Matematičeskoe modelirovanie, Tome 21 (2009) no. 12, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2009_21_12_a0/
[1] Popov I. V., “Novyi podkhod k postroeniyu tetraedralnykh setok”, Fundamentalnye zadachi matematicheskoi fiziki i modelirovaniya tekhnicheskikh i tekhnologicheskikh sistem, 10, M., 2007, 128–133
[2] Popov I. V., Polyuakov S. V., Karamzin Yu. N., “High Accuracy Difference Schemes on Unstructured Triangle Grids”, Numerical Methods and Applications, 5th int. conf. NMA 2002, Revised Papers, eds. I. Divov, I. Lirkov, S. Margenov, Z. Zlatev, Springer, Berlin, 2003 | MR
[3] Meijerink J. A., van der Vorst H. A., “An Iterative Solution Method for Linear Systems, of which the Coefficient Matrix is a Symmetric M-matrix”, Math. Comp., 31:137 (1977), 148–162 | DOI | MR | Zbl
[4] Kershaw D., “The Incomplete Choleski-Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations”, J. Comp. Phys., 26 (1978), 43–65 | DOI | MR | Zbl
[5] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR
[6] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[7] Gustafsson I., “A Class of First Order Factorization Methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl
[8] Milyukova O. Yu., “Nekotorye parallelnye iteratsionnye metody s faktorizovannymi matritsami predobuslovlivaniya dlya resheniya ellipticheskikh uravnenii na treugolnykh setkakh”, Zhurn. vychisl. matem. i matem. fiz., 46:7 (2006), 1096–1112 | MR
[9] Milyukova O. Yu., “Novye parallelnye iteratsionnye metody s faktorizovannymi matritsami predobuslovlivaniya dlya resheniya ellipticheskikh uravnenii na treugolnykh setkakh”, Matem. model., 19:9 (2007), 27–48 | MR | Zbl
[10] Milyukova O. Yu., Parallelnye iteratsionnye metody s faktorizovannymi matritsami predobuslovlivaniya dlya resheniya ellipticheskikh uravnenii, Dissertatsiya na soisk. uchenoi stepeni doktora fiz.-mat. nauk, Moskva, 2004
[11] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR
[12] Hendrickson B., Leland R., “A multilevel algorithm for partitioning graphs”, Supercom-puting' 95 Proc., San Diego, CA, 1995
[13] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 614 pp. | MR