Mathematical simulation of the street traffic in the presence of traffic lights
Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-dimensional traffic flow in the presence of two-position traffic light is considered. Quasi-linear differential equation of the first order for traffic flow density is used as a model. The problem to be researched is what has to be a relationship between the intervals of a green and red light to prevent traffic jams. The same problem is researched for the two crossing streets in the presence of a traffic light in the intersection. There were obtained conditions when the traffic jam is avoided. An algorithm of numerical solution of similar problems related to the street traffic and specific computations are presented.
@article{MM_2009_21_11_a6,
     author = {M. V. Lurje},
     title = {Mathematical simulation of the street traffic in the presence of traffic lights},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {74--82},
     publisher = {mathdoc},
     volume = {21},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_11_a6/}
}
TY  - JOUR
AU  - M. V. Lurje
TI  - Mathematical simulation of the street traffic in the presence of traffic lights
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 74
EP  - 82
VL  - 21
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_11_a6/
LA  - ru
ID  - MM_2009_21_11_a6
ER  - 
%0 Journal Article
%A M. V. Lurje
%T Mathematical simulation of the street traffic in the presence of traffic lights
%J Matematičeskoe modelirovanie
%D 2009
%P 74-82
%V 21
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_11_a6/
%G ru
%F MM_2009_21_11_a6
M. V. Lurje. Mathematical simulation of the street traffic in the presence of traffic lights. Matematičeskoe modelirovanie, Tome 21 (2009) no. 11, pp. 74-82. http://geodesic.mathdoc.fr/item/MM_2009_21_11_a6/

[1] Lighthill M. G., Whitham G. B., “On kinetic waves. II. A theory of traffic flow on ring crowded roads”, Proc. Roy. Soc. London. Ser. A, 229:1178 (1955), 317–345 | DOI | MR | Zbl

[2] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977, 650 pp. | MR

[3] Lukanin V. N., Buslaev A. P., Trofimenko Yu. V., Yashina M. V., Avtotransportnye potoki i okruzhayuschaya sreda, Infra-M, M., 1988, 380 pp.

[4] Shvetsov V. I., “Matematicheskoe modelirovanie transportnykh potokov”, Avtomatika i telemekhanika, 2003, no. 11, 3–46 | MR | Zbl

[5] Kiselev A. B., Kokareva A. V., Nikitin V. F., Smirnov N. N., “Matematicheskoe modelirovanie avtotransportnykh potokov na reguliruemykh dorogakh”, Prikl. matem. i mekhan., 68:6 (2004), 1035–1042 | MR | Zbl

[6] Kiselev A. B., Kokareva A. V., Nikitin V. F., Smirnov N. N., “Matematicheskoe modelirovanie dvizheniya dvukhpolosnogo avtotransportnogo potoka, reguliruemogo svetoforom”, Vestnik Moskovskogo universiteta. Ser. 1, matematika, mekhanika, 2006, no. 4, 35–41 | MR

[7] Karamzin Yu. N., Trapeznikova M. A., Chetverushkin B. N., Churbanova N. G., “Dvumernaya model avtomobilnykh potokov”, Matematicheskoe modelirovanie, 18:6 (2006), 85–95 | Zbl

[8] Klar A., Wegener R., “A hierarchy of models for multilane vehicular traffic”, SIAM J. Appl. Math., 59 (1999), 983–1001 | DOI | MR | Zbl

[9] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy (vvedenie v teoriyu), Nauka, M., 1973, 400 pp. | MR | Zbl