The approximation of homogeneous electron's scattering on trajectories
Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 85-93

Voir la notice de l'article provenant de la source Math-Net.Ru

The kinetic equation for relativistic electrons in gas and self-consistent electromagnetic field is considered. Nonelastic electron's collisions with cas molecula are described in the approximation of small energy transfer during ionizing scattering. The integral of elastic collisions is considered without any approximations. The spatially uniform kinetic equation is considered for electrons, essentially deviated from trajectory, movement equations determined by. The approximate solution in the form of $\delta$-substitution is constructed. The structure of solution substantiates the applicability of particles method for modeling the electron's flux, in spite of collisions. The approximate solution accuracy, which shows it's applicability for wide class of problems of relativistic electron's beams simulation, is estimated.
@article{MM_2009_21_10_a8,
     author = {M. B. Markov},
     title = {The approximation of homogeneous electron's scattering on trajectories},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {21},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_10_a8/}
}
TY  - JOUR
AU  - M. B. Markov
TI  - The approximation of homogeneous electron's scattering on trajectories
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 85
EP  - 93
VL  - 21
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_10_a8/
LA  - ru
ID  - MM_2009_21_10_a8
ER  - 
%0 Journal Article
%A M. B. Markov
%T The approximation of homogeneous electron's scattering on trajectories
%J Matematičeskoe modelirovanie
%D 2009
%P 85-93
%V 21
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_10_a8/
%G ru
%F MM_2009_21_10_a8
M. B. Markov. The approximation of homogeneous electron's scattering on trajectories. Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 85-93. http://geodesic.mathdoc.fr/item/MM_2009_21_10_a8/