Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_10_a11, author = {G. V. Kuznetsov and M. A. Sheremet}, title = {The {Rayleigh--Benard} convection in an enclosure having finite thickness walls}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {111--122}, publisher = {mathdoc}, volume = {21}, number = {10}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_10_a11/} }
TY - JOUR AU - G. V. Kuznetsov AU - M. A. Sheremet TI - The Rayleigh--Benard convection in an enclosure having finite thickness walls JO - Matematičeskoe modelirovanie PY - 2009 SP - 111 EP - 122 VL - 21 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2009_21_10_a11/ LA - ru ID - MM_2009_21_10_a11 ER -
G. V. Kuznetsov; M. A. Sheremet. The Rayleigh--Benard convection in an enclosure having finite thickness walls. Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 111-122. http://geodesic.mathdoc.fr/item/MM_2009_21_10_a11/
[1] A. V. Getling, Konvektsiya Releya–Benara, Editorial URSS, M., 1999, 248 pp.
[2] V. S. Berdnikov, V. A. Markov, “Laminarno-turbulentnyi perekhod v Relei–Benarovskoi konvektsii”, Trudy chetvertoi Rossiiskoi natsionalnoi konferentsii po teploobmenu, t. 3, Izd. MEI, M., 23–27 okt. 2006 g., 59–62
[3] F. Busse, D. V. Lyubimov, T. P. Lyubimova, G. A. Sedelnikov, “Trekhmernye rezhimy konvektsii v kubicheskoi polosti”, Izv. RAN. MZhG, 2008, no. 1, 3–11 | MR
[4] P. A. Ananev, P. K. Volkov, “Estestvennaya konvektsiya v vertikalnom kanale i tsilindre pri nagreve snizu”, Matematicheskoe modelirovanie, 16:11 (2004), 89–100 | Zbl
[5] A. A. Gorbunov, S. A. Nikitin, V. I. Polezhaev, “Ob usloviyakh vozniknoveniya konvektsii Releya–Benara i teploobmene v okolokriticheskoi srede”, Izv. RAN. MZhG, 2007, no. 5, 30–46 | MR | Zbl
[6] J. Pallares, I. Cuesta, F. X. Grau, “Laminar and turbulent Rayleigh-Benard convection in a perfectly conducting cubical cavity”, Int. J. Heat Fluid Flow, 23 (2002), 346–358 | DOI
[7] E. Natarajan, Tanmay Basak, S. Roy, “Natural convection flows in a trapezoidal enclosure with uniform and non-uniform heating of bottom wall”, Int. J. Heat Mass Transfer, 51 (2008), 747–756 | DOI | Zbl
[8] L. Valencia, J. Pallares, I. Cuesta, F. X. Grau, “Turbulent Rayleigh-Benard convection of water in cubical cavities: A numerical and experimental study”, Int. J. Heat Mass Transfer, 50 (2007), 3203–3215 | DOI | Zbl
[9] V. I. Polezhaev, S. A. Nikitin, “Lokalnye effekty teploobmena i temperaturnoe rassloenie pri svobodnoi konvektsii v zamknutykh ob'emakh”, Trudy chetvertoi Rossiiskoi natsionalnoi konferentsii po teploobmenu, t. 1, Izd. MEI, M., 23–27 okt. 2006 g., 93–98
[10] M. Sathiyamoorthy, Tanmay Basak, S. Roy, I. Pop, “Steady natural convection flows in a square cavity with linearly heated side wall(s)”, Int. J. Heat Mass Transfer, 50 (2007), 766–775 | DOI | Zbl
[11] B. Calcagni, F. Marsili, M. Paroncini, “Natural convective heat transfer in square enclosures heated from below”, Applied Thermal Engineering, 25 (2005), 2522–2531 | DOI
[12] A. Liaqat, A. C. Baytas, “Conjugate natural convection in a square enclosure containing volumetric sources”, Int. J. Heat Mass Transfer, 44 (2001), 3273–3280 | DOI | Zbl
[13] Y. Jaluria, Design and Optimization of Thermal Systems, McGraw-Hill, New York, 1998, 626 pp. | Zbl
[14] S. Sathe, B. Sammakia, “A Review of Recent Developments in Some Practical Aspects of Air-Cooled Electronic Packages”, ASME J. Heat Transfer, 120 (1998), 830–839 | DOI
[15] T. Icoz, Y. Jaluria, “Design of Cooling Systems for Electronic Equipment Using Both Experimental and Numerical Inputs”, ASME J. Elec. Packaging, 126 (2005), 465–471 | DOI
[16] V. I. Gnilichenko, G. F. Smirnov, V. B. Tkachenko, “Teplovye truby v sistemakh obespecheniya teplovykh rezhimov elektronnykh sredstv”, Tekhnologiya i konstruirovanie v elektronnoi apparature, 1999, no. 4, 15–19
[17] I. Dzhaluriya, Estestvennaya konvektsiya: teplo- i massoobmen, Mir, M., 1983, 400 pp.
[18] Yu. A. Sokovishin, O. G. Martynenko, Vvedenie v teoriyu svobodno-konvektivnogo teploobmena, Izd-vo Leningr. un-ta, L., 1982, 224 pp.
[19] A. V. Lykov, Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 599 pp. | Zbl
[20] K. Aziz, J. D. Hellums, “Numerical solution of three-dimensional equations of motion for laminar natural convection”, The physics of fluids, 10:2 (1967), 314–324 | DOI | Zbl
[21] P. H. Oosthuizen, J. T. Paul, “Natural convection in a rectangular enclosure with two heated sections on the lower surface”, Int. J. Heat Fluid Flow, 26 (2005), 587–596 | DOI
[22] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl
[23] V. M. Paskonov, V. I. Polezhaev, L. A. Chudov, Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984, 288 pp. | Zbl
[24] G. V. Kuznetsov, M. A. Sheremet, “Modelirovanie termogravitatsionnoi konvektsii v zamknutom ob'eme s lokalnymi istochnikami teplovydeleniya”, Teplofizika i aeromekhanika, 13:4 (2006), 611–621
[25] T. Fusegi, J. M. Hyin, K. Kuwahara, “A numerical study of 3D natural convection in a differently heated cubical enclosure”, Int. J. Heat Mass Transfer, 34 (1991), 1543–1557 | DOI
[26] W. H. Leong, K. G. T. Hollands, A. P. Brunger, “Experimental Nusselt numbers for a cubical-cavity benchmark problem in natural convection”, Int. J. Heat Mass Transfer, 42 (1999), 1979–1989 | DOI