The Rayleigh--Benard convection in an enclosure having finite thickness walls
Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 111-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical simulation of transient natural convection in an enclosure having finite thickness walls at presence of heat source located on bottom of the cavity has been carried out. The special attention was given to the analysis of Grashof number (Gr) effect, describing heat source intensity, of the transient factor, defining formation and development of thermohydrodynamic structures, and also of the heat conductivity ratio. Typical distributions of streamlines and temperature fields have been received. Scales of key parameters (Grashof number, the dimensionless time, the heat conductivity ratio) effect both on local characteristics (streamlines, isotherms) and on integral characteristics (average Nusselt number) of the analyzed process have been determined.
@article{MM_2009_21_10_a11,
     author = {G. V. Kuznetsov and M. A. Sheremet},
     title = {The {Rayleigh--Benard} convection in an enclosure having finite thickness walls},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {21},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_10_a11/}
}
TY  - JOUR
AU  - G. V. Kuznetsov
AU  - M. A. Sheremet
TI  - The Rayleigh--Benard convection in an enclosure having finite thickness walls
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 111
EP  - 122
VL  - 21
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_10_a11/
LA  - ru
ID  - MM_2009_21_10_a11
ER  - 
%0 Journal Article
%A G. V. Kuznetsov
%A M. A. Sheremet
%T The Rayleigh--Benard convection in an enclosure having finite thickness walls
%J Matematičeskoe modelirovanie
%D 2009
%P 111-122
%V 21
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_10_a11/
%G ru
%F MM_2009_21_10_a11
G. V. Kuznetsov; M. A. Sheremet. The Rayleigh--Benard convection in an enclosure having finite thickness walls. Matematičeskoe modelirovanie, Tome 21 (2009) no. 10, pp. 111-122. http://geodesic.mathdoc.fr/item/MM_2009_21_10_a11/

[1] A. V. Getling, Konvektsiya Releya–Benara, Editorial URSS, M., 1999, 248 pp.

[2] V. S. Berdnikov, V. A. Markov, “Laminarno-turbulentnyi perekhod v Relei–Benarovskoi konvektsii”, Trudy chetvertoi Rossiiskoi natsionalnoi konferentsii po teploobmenu, t. 3, Izd. MEI, M., 23–27 okt. 2006 g., 59–62

[3] F. Busse, D. V. Lyubimov, T. P. Lyubimova, G. A. Sedelnikov, “Trekhmernye rezhimy konvektsii v kubicheskoi polosti”, Izv. RAN. MZhG, 2008, no. 1, 3–11 | MR

[4] P. A. Ananev, P. K. Volkov, “Estestvennaya konvektsiya v vertikalnom kanale i tsilindre pri nagreve snizu”, Matematicheskoe modelirovanie, 16:11 (2004), 89–100 | Zbl

[5] A. A. Gorbunov, S. A. Nikitin, V. I. Polezhaev, “Ob usloviyakh vozniknoveniya konvektsii Releya–Benara i teploobmene v okolokriticheskoi srede”, Izv. RAN. MZhG, 2007, no. 5, 30–46 | MR | Zbl

[6] J. Pallares, I. Cuesta, F. X. Grau, “Laminar and turbulent Rayleigh-Benard convection in a perfectly conducting cubical cavity”, Int. J. Heat Fluid Flow, 23 (2002), 346–358 | DOI

[7] E. Natarajan, Tanmay Basak, S. Roy, “Natural convection flows in a trapezoidal enclosure with uniform and non-uniform heating of bottom wall”, Int. J. Heat Mass Transfer, 51 (2008), 747–756 | DOI | Zbl

[8] L. Valencia, J. Pallares, I. Cuesta, F. X. Grau, “Turbulent Rayleigh-Benard convection of water in cubical cavities: A numerical and experimental study”, Int. J. Heat Mass Transfer, 50 (2007), 3203–3215 | DOI | Zbl

[9] V. I. Polezhaev, S. A. Nikitin, “Lokalnye effekty teploobmena i temperaturnoe rassloenie pri svobodnoi konvektsii v zamknutykh ob'emakh”, Trudy chetvertoi Rossiiskoi natsionalnoi konferentsii po teploobmenu, t. 1, Izd. MEI, M., 23–27 okt. 2006 g., 93–98

[10] M. Sathiyamoorthy, Tanmay Basak, S. Roy, I. Pop, “Steady natural convection flows in a square cavity with linearly heated side wall(s)”, Int. J. Heat Mass Transfer, 50 (2007), 766–775 | DOI | Zbl

[11] B. Calcagni, F. Marsili, M. Paroncini, “Natural convective heat transfer in square enclosures heated from below”, Applied Thermal Engineering, 25 (2005), 2522–2531 | DOI

[12] A. Liaqat, A. C. Baytas, “Conjugate natural convection in a square enclosure containing volumetric sources”, Int. J. Heat Mass Transfer, 44 (2001), 3273–3280 | DOI | Zbl

[13] Y. Jaluria, Design and Optimization of Thermal Systems, McGraw-Hill, New York, 1998, 626 pp. | Zbl

[14] S. Sathe, B. Sammakia, “A Review of Recent Developments in Some Practical Aspects of Air-Cooled Electronic Packages”, ASME J. Heat Transfer, 120 (1998), 830–839 | DOI

[15] T. Icoz, Y. Jaluria, “Design of Cooling Systems for Electronic Equipment Using Both Experimental and Numerical Inputs”, ASME J. Elec. Packaging, 126 (2005), 465–471 | DOI

[16] V. I. Gnilichenko, G. F. Smirnov, V. B. Tkachenko, “Teplovye truby v sistemakh obespecheniya teplovykh rezhimov elektronnykh sredstv”, Tekhnologiya i konstruirovanie v elektronnoi apparature, 1999, no. 4, 15–19

[17] I. Dzhaluriya, Estestvennaya konvektsiya: teplo- i massoobmen, Mir, M., 1983, 400 pp.

[18] Yu. A. Sokovishin, O. G. Martynenko, Vvedenie v teoriyu svobodno-konvektivnogo teploobmena, Izd-vo Leningr. un-ta, L., 1982, 224 pp.

[19] A. V. Lykov, Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 599 pp. | Zbl

[20] K. Aziz, J. D. Hellums, “Numerical solution of three-dimensional equations of motion for laminar natural convection”, The physics of fluids, 10:2 (1967), 314–324 | DOI | Zbl

[21] P. H. Oosthuizen, J. T. Paul, “Natural convection in a rectangular enclosure with two heated sections on the lower surface”, Int. J. Heat Fluid Flow, 26 (2005), 587–596 | DOI

[22] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[23] V. M. Paskonov, V. I. Polezhaev, L. A. Chudov, Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984, 288 pp. | Zbl

[24] G. V. Kuznetsov, M. A. Sheremet, “Modelirovanie termogravitatsionnoi konvektsii v zamknutom ob'eme s lokalnymi istochnikami teplovydeleniya”, Teplofizika i aeromekhanika, 13:4 (2006), 611–621

[25] T. Fusegi, J. M. Hyin, K. Kuwahara, “A numerical study of 3D natural convection in a differently heated cubical enclosure”, Int. J. Heat Mass Transfer, 34 (1991), 1543–1557 | DOI

[26] W. H. Leong, K. G. T. Hollands, A. P. Brunger, “Experimental Nusselt numbers for a cubical-cavity benchmark problem in natural convection”, Int. J. Heat Mass Transfer, 42 (1999), 1979–1989 | DOI