Mathematical model and optimization of process carbonization of the ammoniated brine
Matematičeskoe modelirovanie, Tome 20 (2008) no. 9, pp. 105-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of process carbonization of ammoniated brine for the purposes of optimum control is developed. The task of search of a temperature mode is formulated and solved, at which the maximal output of a target product (a hydro carbonate of sodium) is provided with the help of the Pontryagin's principle of maximum
@article{MM_2008_20_9_a7,
     author = {A. G. Afanasenko and J. A. Gnatenko},
     title = {Mathematical model and optimization of process carbonization of the ammoniated brine},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--110},
     publisher = {mathdoc},
     volume = {20},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_9_a7/}
}
TY  - JOUR
AU  - A. G. Afanasenko
AU  - J. A. Gnatenko
TI  - Mathematical model and optimization of process carbonization of the ammoniated brine
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 105
EP  - 110
VL  - 20
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_9_a7/
LA  - ru
ID  - MM_2008_20_9_a7
ER  - 
%0 Journal Article
%A A. G. Afanasenko
%A J. A. Gnatenko
%T Mathematical model and optimization of process carbonization of the ammoniated brine
%J Matematičeskoe modelirovanie
%D 2008
%P 105-110
%V 20
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_9_a7/
%G ru
%F MM_2008_20_9_a7
A. G. Afanasenko; J. A. Gnatenko. Mathematical model and optimization of process carbonization of the ammoniated brine. Matematičeskoe modelirovanie, Tome 20 (2008) no. 9, pp. 105-110. http://geodesic.mathdoc.fr/item/MM_2008_20_9_a7/

[1] Shokin I. N., Krasheninnikov S. A., Tekhnologiya sody, Khimiya, M., 1975, 288 pp.

[2] Tkach G. A., Shaporev V. P., Titov V. M., Proizvodstvo sody po malootkhodnoi tekhnologii, Monografiya, KhGPU, Kharkov, 1998, 429 pp.

[3] Akhmetov S. A., Ishmiyarov M. Kh., Verevkin A. P., Dokuchaev E. S., Malyshev Yu. M., Tekhnologiya, ekonomika i avtomatizatsiya protsessov pererabotki nefti i gaza, Khimiya, M., 2005, 735 pp.

[4] Pupkov K. A. i Egupov N. D. (red.), Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya. T. 1. Matematicheskie modeli, dinamicheskie kharakteristiki i analiz sistem avtomaticheskogo upravleniya, Uchebnik v 5-i tt.; 2-e izd., pererab. i dop., Izdatelstvo MGTU im. N. E. Baumana, M., 2004, 656 pp.

[5] Pupkov K. A. i Egupov N. D. (red.), Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya T. 4. Teoriya optimizatsii sistem avtomaticheskogo upravleniya, Uchebnik v 5-i tt.; 2-e izd., pererab. i dop., Izdatelstvo MGTU im. N. E. Baumana, M., 2004, 744 pp.

[6] Ostrovskii G. M., Volin Yu. M., Metody optimizatsii khimicheskikh reaktorov, Khimiya, M., 1967, 248 pp.

[7] Valieva Yu. A., Davletshin R. S., Mustafina S. A., Optimizatsiya khimicheskikh protsessov na osnove printsipa maksimuma Pontryagina, dep. rukop. No 502005001522, VNTITs, M., 2005