The laser plasma in external magnetic field
Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 74-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Evolution of laser plasma in external magnetic field was investigated in this work. Equations of ideal MHD in cylindrical system coordinates are numerically solved using conservative TVD difference scheme second order by space and time. At the initial moment heating of target that consist vapors of aluminum is implemented by action short laser pulse with duration time 30 nanoseconds and Gaussian profile by space with half-thickness 0.03 centimeters. Both of weak (plasma parameter $\beta=1$) and strong ($\beta =0.026$) external magnetic field cases are examined. Results show, that magnetic field increase the width of laser jet's front and force plasma to drive mainly along magnetic field lines. Increasing magnitude of magnetic field lead to grow a number of heterogeneous in temperature distribution by jet volume. Moving of plasma look like a jet shape, that directed and localized in vertical direction along axis of symmetry at last studies of simulations.
@article{MM_2008_20_8_a6,
     author = {D. O. Ustyugov and S. D. Ustyugov},
     title = {The laser plasma in external magnetic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {20},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_8_a6/}
}
TY  - JOUR
AU  - D. O. Ustyugov
AU  - S. D. Ustyugov
TI  - The laser plasma in external magnetic field
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 74
EP  - 86
VL  - 20
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_8_a6/
LA  - ru
ID  - MM_2008_20_8_a6
ER  - 
%0 Journal Article
%A D. O. Ustyugov
%A S. D. Ustyugov
%T The laser plasma in external magnetic field
%J Matematičeskoe modelirovanie
%D 2008
%P 74-86
%V 20
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_8_a6/
%G ru
%F MM_2008_20_8_a6
D. O. Ustyugov; S. D. Ustyugov. The laser plasma in external magnetic field. Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 74-86. http://geodesic.mathdoc.fr/item/MM_2008_20_8_a6/

[1] G. S. Romanov, K. L. Stepanov, M. I. Surkin, Opt. Spektrosk., 53 (1982), 642

[2] V. I. Mazhukin, V. V. Nossov, I. Smurov and G. Flamant, “Modeling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour”, J. Phys. D: Appl. Phys., 37:2 (2004), 185–199 | DOI

[3] V. Mazhukin, I. Smurov, G. Flamant, “Simulation of laser plasma dynamic: influence of ambient pressure and intensity of laser radiation”, J. Comp. Phys., 112:1 (1994), 78 | DOI | Zbl

[4] Vladimir I. Mazhukin Alexander A. Samarskii, “Mathematical modeling in the technology of laser treat-ments of materials”, Surv. Math. Ind., 4 (1994), 85 | MR | Zbl

[5] V. A. Gasilov, A. Yu. Krukovskii, T. P. Novikova, V. B. Rozanov, “Numerical simulation of plasma implosion due to radiation heating of the inlet-hole walls of a hohlraum target”, Journal of Russian Laser Research, 21:5 (2000), 465 | DOI

[6] Ph. Nicolai and V. T. Tikhonchuk, et al., “Plasma jets produced in a single laser beam interaction with a planar target”, Phys. Plasmas, 13 (2006), 062701 | DOI

[7] Matthilas Gonzalez, et al., “Astrophysical radiative shocks: From modeling to laboratory experiments”, Laser and Particle Beams, 24:4 (2006), 535

[8] C. Bousquet, J. Grumberg, E. Leboucher-Dalimier, H. Nguyen, A. Poquerusse, “Radiative transfer and trans-verse inhomogeneity effects in spectral lines emitted from laser plasmas”, Journal of Physics B: Atomic, Molecular, and Optical Physics, 23:11 (1990), 1783 | DOI

[9] A. E. Bugrov, I. N. Burdonskii, V. V. Gavrilov i dr., “Diagnostika bystroprotekayuschikh protsessov v lazernoi plazme v eksperimentakh po oblucheniyu maloplotnykh sred na ustanovke “Mishen””, Fizika plazmy, 30:2 (2004), 1

[10] R. Turpault, M. Frank, B. Dubroca, A. Klar, “Multigroup half space moment approximations to the radiative heat transfer equations”, Journal of Computational Physics, 198 (2004), 363 | DOI | Zbl

[11] H. C. Yee, G. H. Klopfer and J.-L. Montagne, “High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows”, Journal of Computational Physics, 88:1 (1990), 31 | DOI | MR | Zbl

[12] V. I. Mazhukin, V. V. Nossov, G. Flamant, I. Smurov, “Modeling of radiation transfer and emission spectra in laser-induced plasma of Al vapor”, Journal of Quantitative Spectroscopy Radiative Transfer, 73 (2002), 451 | DOI

[13] N. N. Kalitkin, I. V. Ritus, A. M. Mironov, Preprint No 6, IPM AN SSSR, Moscow, 1983 | MR

[14] Chi-Wang Shu and Stanley Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, Journal of Computational Physics, 77:2 (1988), 439 | DOI | MR | Zbl

[15] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR | Zbl