Finite-difference method for computation of the gas dynamics equations with artificial viscosity
Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 48-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite-difference method for computation of the gas dynamics equations with adaptive artificial viscosity (AAV) is proposed. It is homogeneous, monotonous finite-difference scheme of the second order approximation on time and space variables outside of areas of breaks and compression waves. The paper presents new way of introduction of artificial viscosity. It is investigated stability of the scheme. Test calculations of contact breaks movement, shock waves and disintegration of breaks were performed.
@article{MM_2008_20_8_a4,
     author = {I. V. Popov and I. V. Fryazinov},
     title = {Finite-difference method for computation of the gas dynamics equations with artificial viscosity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--60},
     publisher = {mathdoc},
     volume = {20},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_8_a4/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - I. V. Fryazinov
TI  - Finite-difference method for computation of the gas dynamics equations with artificial viscosity
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 48
EP  - 60
VL  - 20
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_8_a4/
LA  - ru
ID  - MM_2008_20_8_a4
ER  - 
%0 Journal Article
%A I. V. Popov
%A I. V. Fryazinov
%T Finite-difference method for computation of the gas dynamics equations with artificial viscosity
%J Matematičeskoe modelirovanie
%D 2008
%P 48-60
%V 20
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_8_a4/
%G ru
%F MM_2008_20_8_a4
I. V. Popov; I. V. Fryazinov. Finite-difference method for computation of the gas dynamics equations with artificial viscosity. Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 48-60. http://geodesic.mathdoc.fr/item/MM_2008_20_8_a4/

[1] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Uchebn. posobie dlya Vuzov, izd. 3-e dop., Nauka, M., 1992 | MR

[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Fizmatlit., Nauka, M., 1978 | MR | Zbl

[3] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Prokopov G. P. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[4] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, Maks-Press, M., 2004

[5] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh uravnenii, Fizmatlit, M., 2001 | Zbl

[6] Bondarenko Yu. A., Bashurov V. V., Yanilkin Yu. V., Matematicheskie modeli i chislennye metody dlya resheniya zadach nestatsionarnoi gazovoi dinamiki. Obzor zarubezhnoi literatury, preprint 88-2003, RFYaTs-VNIIEF, 53 pp.

[7] Liska Richard, Wendroff Burton, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, , 2001, 1–57 http://www.math.ntnu.no/conservation

[8] Breslavsky P. V., Mazhukin V. I., “Simulation of integrating discontinuous solutions on dynamically adaptive grids”, Computational Methods in Applied Mathematics, 7:2 (2007), 103–107 | MR

[9] Vasilevskii V. F., Vyaznikov K. V., Tishkin V. F., Favorskii A. P., Kvazimonotonnye raznostnye skhemy povyshennogo poryadka tochnosti na adaptivnykh setkakh neregulyarnoi struktury, preprint No 124, IPM im. M. V. Keldysha AN SSSR, M., 1990