Modeling of nanoparticle charging processes in plasma and interparticle spacing determination
Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 41-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using molecular dynamics method the work models dust particle charge determination and potential in low pressure plasma depending on interparticle spacing in the wide range of particle sizes and ion path lengths. Thermal motion of ions, their collision with atoms and ion production due to volume ionization are taken into account. There has been obtained an interparticle spacing determination criterion that corresponds to the maximum dust particle charge verified by experimental data.
@article{MM_2008_20_8_a3,
     author = {A. V. Sysun and A. S. Shelestov},
     title = {Modeling of nanoparticle charging processes in plasma and interparticle spacing determination},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--47},
     publisher = {mathdoc},
     volume = {20},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_8_a3/}
}
TY  - JOUR
AU  - A. V. Sysun
AU  - A. S. Shelestov
TI  - Modeling of nanoparticle charging processes in plasma and interparticle spacing determination
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 41
EP  - 47
VL  - 20
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_8_a3/
LA  - ru
ID  - MM_2008_20_8_a3
ER  - 
%0 Journal Article
%A A. V. Sysun
%A A. S. Shelestov
%T Modeling of nanoparticle charging processes in plasma and interparticle spacing determination
%J Matematičeskoe modelirovanie
%D 2008
%P 41-47
%V 20
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_8_a3/
%G ru
%F MM_2008_20_8_a3
A. V. Sysun; A. S. Shelestov. Modeling of nanoparticle charging processes in plasma and interparticle spacing determination. Matematičeskoe modelirovanie, Tome 20 (2008) no. 8, pp. 41-47. http://geodesic.mathdoc.fr/item/MM_2008_20_8_a3/

[1] R. Buss, J. Babu, J. Vac. Sci. Technology A, 14 (1996), 577 | DOI

[2] Y. Watanabe, M. Shiratani, Plasma Sources Sci. Technology, 3 (1994), 286 | DOI

[3] Y. Hayashi, K. Tachibana, Jpn. Apply Physics, 33 (1994), L809

[4] J. H. Chu, I. Lin, Physical Review Letters, 72:25 (1994), 4009 | DOI

[5] H. Thomas, G. E. Morfill, V. Demmel and others, Physical Review Letters, 73:5 (1994), 652 | DOI

[6] T. Trottenberg, A. Melzer, A. Pill, Plasma Sources Sci. Technology, 4 (1994), 450 | DOI

[7] V. E. Fortov, A. P. Nefedov, V. M. Torchinski and others, Physics Letters A, 229 (1997), 317 | DOI

[8] A. D. Khahaev, L. A. Luisova, A. A. Piskunov etc., XVI International Conference Gas Discharges and their Applications, v. 1, Xiam, China, 2006, 341

[9] V. I. Sysun, A. D. Khakhaev, O. V. Oleschuk, A. S. Shelestov, Fizika plazmy, 31:9 (2005), 834

[10] J. P. Baeuf, Physical Review A, 46:12 (1992), 7910 | DOI

[11] A. V. Zobnin, A. P. Nefedov, V. A. Sinelschikov, V. E. Fortov, ZhETF, 118:3(9) (2000), 554

[12] O. S. Vaulina, A. Yu. Repin, O. F. Petrov, Fizika plazmy, 32:6 (2006), 528