Modeling of quasiperiodic processes
Matematičeskoe modelirovanie, Tome 20 (2008) no. 7, pp. 23-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm of construction of Mathieu's equation using more difficult Hill's equation having the quasiperiodic solution is offered. It is shown, that in this case it is possible to approximate the solution of Hill's equation the solution of Mathieu's equation with satisfactory accuracy. The resulted algorithm has been used for modeling of bioelectric signals.
@article{MM_2008_20_7_a2,
     author = {V. I. Volkov and D. Yu. Kozlov},
     title = {Modeling of quasiperiodic processes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--29},
     publisher = {mathdoc},
     volume = {20},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_7_a2/}
}
TY  - JOUR
AU  - V. I. Volkov
AU  - D. Yu. Kozlov
TI  - Modeling of quasiperiodic processes
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 23
EP  - 29
VL  - 20
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_7_a2/
LA  - ru
ID  - MM_2008_20_7_a2
ER  - 
%0 Journal Article
%A V. I. Volkov
%A D. Yu. Kozlov
%T Modeling of quasiperiodic processes
%J Matematičeskoe modelirovanie
%D 2008
%P 23-29
%V 20
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_7_a2/
%G ru
%F MM_2008_20_7_a2
V. I. Volkov; D. Yu. Kozlov. Modeling of quasiperiodic processes. Matematičeskoe modelirovanie, Tome 20 (2008) no. 7, pp. 23-29. http://geodesic.mathdoc.fr/item/MM_2008_20_7_a2/

[1] Grebennikov E. A., Ryabov Yu. A., Konstruktivnye metody analiza nelineinykh sistem, Nauka, M., 1979, 432 pp. | MR | Zbl

[2] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, IL, M., 1951

[3] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[4] Shironosov V. G., Rezonans v fizike, khimii i biologii, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 2001, 92 pp.

[5] Grigorev A. I., Golovanov A. S., “Deformatsii i perekrytiya zon neustoichivosti uravneniya Mate–Khilla”, Pisma v ZhETF, 25:20 (1999), 13–18

[6] Volkov V. I., Kozlov D. Yu., Shelomanov A. I., “Blizost kolebanii parametricheskikh sistem”, Ustoichivost techenii gomogennykh i geterogennykh zhidkostei, Tezisy doklada Mezhdunarodnoi konferentsii, no. 9, ed. Kozlov V. V., Novosibirsk, 2004, 48–49

[7] Landau L. D., Lifshsch E. M., Mekhanika, Nauka, M., 1965, 204 pp.