Numerical solution of a problem of freezing ground
Matematičeskoe modelirovanie, Tome 20 (2008) no. 7, pp. 119-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical algorithm based on the method of fictitious areas that is revelant for implementation of the mathematical modelling of the melted ground freezing saturated with salted water solution is proposed. The comparison of the obtained results with the results that have been received by the method of catch surface into the grid point and automodel solution is presented.
@article{MM_2008_20_7_a10,
     author = {V. l. Vasiliev and V. V. Popov},
     title = {Numerical solution of a problem of freezing ground},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--128},
     publisher = {mathdoc},
     volume = {20},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_7_a10/}
}
TY  - JOUR
AU  - V. l. Vasiliev
AU  - V. V. Popov
TI  - Numerical solution of a problem of freezing ground
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 119
EP  - 128
VL  - 20
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_7_a10/
LA  - ru
ID  - MM_2008_20_7_a10
ER  - 
%0 Journal Article
%A V. l. Vasiliev
%A V. V. Popov
%T Numerical solution of a problem of freezing ground
%J Matematičeskoe modelirovanie
%D 2008
%P 119-128
%V 20
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_7_a10/
%G ru
%F MM_2008_20_7_a10
V. l. Vasiliev; V. V. Popov. Numerical solution of a problem of freezing ground. Matematičeskoe modelirovanie, Tome 20 (2008) no. 7, pp. 119-128. http://geodesic.mathdoc.fr/item/MM_2008_20_7_a10/

[1] Avdonin N. A., Matematicheskoe opisanie protsessov kristallizatsii, Zinatne, Riga, 1980 | MR | Zbl

[2] Borisov V. T., Teoriya dvukhfaznoi zony metallicheskogo slitka, Metallurgiya, M., 1987

[3] Meirmanov A. M., Zadacha Stefana, Nauka, Novosibirsk, 1986 | MR | Zbl

[4] Zolotarev P. P., Roshal A. A., “Tochnye resheniya nekotorykh zadach promerzaniya tolschi rastvora”, Inzh.-fizich. zhurn., 24:3 (1967), 921–929

[5] Vasilev V. I., “Chislennaya realizatsiya modelei zamorazhivaniya vodonasyschennogo grunta”, Matem. modelirovanie, 7:8 (1995), 91–104

[6] Maksimov A. M., Tsypkin G. G., “Matematicheskaya model promerzaniya vodonasyschennoi poristoi sredy”, Zhurn. vychisl. matem. i matem. fiziki, 26:11 (1986), 1743–1747 | MR

[7] Entov V. M., Maksimov A. M., “K zadache o promerzanii rastvora soli”, Inzh. fiz. zhurn., 51:5 (1986), 817–821

[8] Entov V. M., Maksimov A. M., Tsypkin G. G., “Ob obrazovanii dvukhfaznoi zony pri kristallizatsii smesi v poristoi srede”, Dokl. AN SSSR, 288:3 (1986), 621–624

[9] Maksimov A. M., Tsypkin G. G., “Yavlenie “peregreva” i obrazovaniya dvukhfaznoi zony pri fazovykh perekhodakh v merzlykh gruntakh”, Dokl. AN SSSR, 294:5 (1987), 1117–1121

[10] Maksimov A. M., Tsypkin G. G., “Avtomodelnoe reshenie zadachi o protaivanii merzlogo grunta”, Izv. AN SSSR. MZhG, 1988, no. 6, 136–142 | MR | Zbl

[11] Vasilev V. I., Maksimov A. M., Petrov E. E., Tsypkin G. G., Teplomassoperenos v promerzayuschikh i protaivayuschikh gruntakh, Nauka, M., 1996 | Zbl

[12] Vasilev V. I., Maksimov A. M., Tsypkin G. G., “Matematicheskaya model zamerzaniya-tayaniya zasolennogo merzlogo grunta”, Prikladnaya mekhanika i tekhnicheskaya fizika, 36:5 (1995), 57–66

[13] Vabischevich P. N., Metod fiktivnykh oblastei v zadachakh matematicheskoi fiziki, Izd-vo MGU, M., 1991 | Zbl

[14] Samarskii A. A., Tikhonov A. N., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | Zbl

[15] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zhurn. vychisl. matem. i matem. fiziki, 5:5 (1965), 816–827 | MR | Zbl