Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2008_20_6_a3, author = {T. S. Martynova}, title = {Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {35--47}, publisher = {mathdoc}, volume = {20}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2008_20_6_a3/} }
TY - JOUR AU - T. S. Martynova TI - Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods JO - Matematičeskoe modelirovanie PY - 2008 SP - 35 EP - 47 VL - 20 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2008_20_6_a3/ LA - ru ID - MM_2008_20_6_a3 ER -
T. S. Martynova. Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods. Matematičeskoe modelirovanie, Tome 20 (2008) no. 6, pp. 35-47. http://geodesic.mathdoc.fr/item/MM_2008_20_6_a3/
[1] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976, 352 pp. | MR | Zbl
[2] Krukier L. A., Martynova T. S., “Chislennoe modelirovanie rasprostraneniya primesi v zhidkokristallicheskom rastvore, nakhodyaschemsya vo vneshnem elektricheskom pole”, Matem. modelirovanie, 16:1 (2004), 3–11 | MR | Zbl
[3] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 248 pp.
[4] Krukier L.A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izvestiya VUZov, Matem., 1979, no. 7, 41–52 | MR | Zbl
[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR
[6] Krukier L. A., Martynova T. S., “O vliyanii formy zapisi uravneniya konvektsii-diffuzii na skhodimost metoda verkhnei relaksatsii”, ZhVM i MF, 39:11 (1999), 1821–1827 | MR | Zbl
[7] Krukier L. A., Martynova T. S., “Reshenie ellipticheskikh kraevykh zadach vtorogo poryadka s malym parametrom pri starshei proizvodnoi iteratsionnymi metodami SOR i SSOR”, Sovr. problemy mat. modelirovaniya, izd-vo RGU, Rostov-na-Donu, 1997, 71–76
[8] Krukier L. A., Martynova T. S., “Point SOR and SSOR methods for the numerical solution of the steady convection-diffusion equation with dominant convection”, Series in Computational and Applied Mathematics, IMACS, 5, 1999, 399–404
[9] Bochev M. A., Krukier L. A., “Ob iteratsionnom reshenii silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, ZhVM i MF, 37:11 (1997), 1283–1293 | MR | Zbl
[10] Krukier L. A., Chikina L. G., “Kososimmetricheskii iteratsionnyi metod dlya resheniya statsionarnogo uravneniya konvektsii-diffuzii”, Izvestiya VUZov, Matem., 2000, no. 11, 62–75 | MR | Zbl
[11] Krukier L. A., Chikina L. G., Belokon T. V., “Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations”, Appl. Numer. Math., 41 (2002), 89–105 | DOI | MR | Zbl
[12] T. S. Martynova, O. A. Belokon, “Nestatsionarnyi iteratsionnyi metod resheniya silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, Matem. modelirovanie, 13:3 (2001), 61–68 | MR | Zbl
[13] Wang L., Bai Z.-Z., “Skew–Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts”, BIT Numer. Math., 44 (2004), 363–386 | DOI | MR | Zbl
[14] Bai Z. Z., Krukier L. A., Martynova T. S., “Dvukhshagovye iteratsionnye metody resheniya statsionarnogo uravneniya konvektsii-diffuzii s malym parametrom pri starshei proizvodnoi na ravnomernoi setke”, ZhVM i MF, 46:2 (2006), 295–306 | MR | Zbl
[15] Bai Z.-Z., Sun J.-C., Wang D.-R., “A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations”, Comput. Math. Appl., 32:12 (1996), 51–76 | DOI | MR | Zbl
[16] Krukier L. A., “Iterative solution of nonsymmetric linear equation systems with dominant skew-symmetric part”, Proceedings of International Summer School “Iterative Methods and Matrix Computations”, RSU publisher, Rostov on Don, 2002, 205–259
[17] Krukier L. A., “Matematicheskoe modelirovanie protsessov perenosa v neszhimaemykh sredakh s preobladayuschei konvektsiei”, Matem. modelirovanie, 9:2 (1997), 4–12 | MR | Zbl