Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods
Matematičeskoe modelirovanie, Tome 20 (2008) no. 6, pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second order elliptical equations with mixed derivatives are considered. These problems appear in the medium with different properties in some directions. Discret model has got on the base of central-difference approximations. Spectra of matrices are presented and properties of these spectra are investigated. New two-step skew-symmetric iterative method is used for the solution of linear system of algebraic equations.
@article{MM_2008_20_6_a3,
     author = {T. S. Martynova},
     title = {Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2008_20_6_a3/}
}
TY  - JOUR
AU  - T. S. Martynova
TI  - Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods
JO  - Matematičeskoe modelirovanie
PY  - 2008
SP  - 35
EP  - 47
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2008_20_6_a3/
LA  - ru
ID  - MM_2008_20_6_a3
ER  - 
%0 Journal Article
%A T. S. Martynova
%T Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods
%J Matematičeskoe modelirovanie
%D 2008
%P 35-47
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2008_20_6_a3/
%G ru
%F MM_2008_20_6_a3
T. S. Martynova. Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods. Matematičeskoe modelirovanie, Tome 20 (2008) no. 6, pp. 35-47. http://geodesic.mathdoc.fr/item/MM_2008_20_6_a3/

[1] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976, 352 pp. | MR | Zbl

[2] Krukier L. A., Martynova T. S., “Chislennoe modelirovanie rasprostraneniya primesi v zhidkokristallicheskom rastvore, nakhodyaschemsya vo vneshnem elektricheskom pole”, Matem. modelirovanie, 16:1 (2004), 3–11 | MR | Zbl

[3] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 248 pp.

[4] Krukier L.A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izvestiya VUZov, Matem., 1979, no. 7, 41–52 | MR | Zbl

[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[6] Krukier L. A., Martynova T. S., “O vliyanii formy zapisi uravneniya konvektsii-diffuzii na skhodimost metoda verkhnei relaksatsii”, ZhVM i MF, 39:11 (1999), 1821–1827 | MR | Zbl

[7] Krukier L. A., Martynova T. S., “Reshenie ellipticheskikh kraevykh zadach vtorogo poryadka s malym parametrom pri starshei proizvodnoi iteratsionnymi metodami SOR i SSOR”, Sovr. problemy mat. modelirovaniya, izd-vo RGU, Rostov-na-Donu, 1997, 71–76

[8] Krukier L. A., Martynova T. S., “Point SOR and SSOR methods for the numerical solution of the steady convection-diffusion equation with dominant convection”, Series in Computational and Applied Mathematics, IMACS, 5, 1999, 399–404

[9] Bochev M. A., Krukier L. A., “Ob iteratsionnom reshenii silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, ZhVM i MF, 37:11 (1997), 1283–1293 | MR | Zbl

[10] Krukier L. A., Chikina L. G., “Kososimmetricheskii iteratsionnyi metod dlya resheniya statsionarnogo uravneniya konvektsii-diffuzii”, Izvestiya VUZov, Matem., 2000, no. 11, 62–75 | MR | Zbl

[11] Krukier L. A., Chikina L. G., Belokon T. V., “Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations”, Appl. Numer. Math., 41 (2002), 89–105 | DOI | MR | Zbl

[12] T. S. Martynova, O. A. Belokon, “Nestatsionarnyi iteratsionnyi metod resheniya silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, Matem. modelirovanie, 13:3 (2001), 61–68 | MR | Zbl

[13] Wang L., Bai Z.-Z., “Skew–Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts”, BIT Numer. Math., 44 (2004), 363–386 | DOI | MR | Zbl

[14] Bai Z. Z., Krukier L. A., Martynova T. S., “Dvukhshagovye iteratsionnye metody resheniya statsionarnogo uravneniya konvektsii-diffuzii s malym parametrom pri starshei proizvodnoi na ravnomernoi setke”, ZhVM i MF, 46:2 (2006), 295–306 | MR | Zbl

[15] Bai Z.-Z., Sun J.-C., Wang D.-R., “A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations”, Comput. Math. Appl., 32:12 (1996), 51–76 | DOI | MR | Zbl

[16] Krukier L. A., “Iterative solution of nonsymmetric linear equation systems with dominant skew-symmetric part”, Proceedings of International Summer School “Iterative Methods and Matrix Computations”, RSU publisher, Rostov on Don, 2002, 205–259

[17] Krukier L. A., “Matematicheskoe modelirovanie protsessov perenosa v neszhimaemykh sredakh s preobladayuschei konvektsiei”, Matem. modelirovanie, 9:2 (1997), 4–12 | MR | Zbl